The current state of artificial intelligence in ophthalmology

      Abstract

      Artificial intelligence (AI) is a branch of computer science that deals with the development of algorithms that seek to simulate human intelligence. We provide an overview of the basic principles in AI that are essential to the understanding of AI and its application in health care. We also present a descriptive analysis of the current state of AI in various fields of medicine, especially ophthalmology. Finally, we review the potential limitations and challenges that come along with the development and implementation of this new technology that will likely play a major role in clinical medicine in the near future.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Survey of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abramoff M.D.
        • Lou Y.
        • Erginay A.
        • et al.
        Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.
        Invest Ophthalmol Vis Sci. 2016; 57: 5200-5206
        • Acharya U.R.
        • Mookiah M.R.
        • Koh J.E.
        • et al.
        Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features.
        Comput Biol Med. 2016; 73: 131-140
        • Ataer-Cansizoglu E.
        • Bolon-Canedo V.
        • Campbell J.P.
        • et al.
        • i-ROP Research Consortium
        Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the “i-ROP” System and Image Features Associated With Expert Diagnosis.
        Transl Vis Sci Technol. 2015; 4: 5
        • Aslam T.M.
        • Zaki H.R.
        • Mahmood S.
        • et al.
        Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration.
        Am J Ophthalmol. 2018; 185: 94-100
        • Beccaria M.
        • Mellors T.R.
        • Petion J.S.
        • et al.
        Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography - Time of flight mass spectrometry and machine learning.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2018; 1074-1075: 46-50
        • Bogunovic H.
        • Montuoro A.
        • Baratsits M.
        • et al.
        Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging.
        Invest Ophthalmol Vis Sci. 2017; 58: BIO141-BIO150
        • Bogunovic H.
        • Waldstein S.M.
        • Schlegl T.
        • et al.
        Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach.
        Invest Ophthalmol Vis Sci. 2017; 58: 3240-3248
        • Bolón-Canedo V.
        • Ataer-Cansizoglu E.
        • Erdogmus D.
        • et al.
        Dealing with inter-expert variability in retinopathy of prematurity: A machine learning approach.
        Comput Methods Programs Biomed. 2015; 122: 1-15
        • Brattain L.J.
        • Telfer B.A.
        • Dhyani M.
        • Grajo J.R.
        • Samir A.E.
        Machine learning for medical ultrasound: status, methods, and future opportunities.
        Abdom Radiol (ny). 2018; 43: 786-799
        • Burlina P.M.
        • Joshi N.
        • Pekala M.
        • Pacheco K.D.
        • Freund D.E.
        • Bressler N.M.
        Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
        JAMA Ophthalmol. 2017; 135: 1170-1176
        • Buzaev I.V.
        • Plechev V.V.
        • Nikolaeva I.E.
        Artificial Intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes.
        Chronic Dis Translation Med. 2016; 2: 166-172
        • Bzdok D.
        • Meyer-Lindenberg A.
        Machine Learning for Precision Psychiatry: Opportunities and Challenges.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 223-230
        • Cabitza F.
        • Rasoini R.
        • Gensini G.F.
        Unintended Consequences of Machine Learning in Medicine.
        JAMA. 2017; 318: 517-518
        • Carrillo F.
        • Sigman M.
        • Fernández Slezak D.
        • et al.
        Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression.
        J Affect Disord. 2018; 230: 84-86
        • Caruana R.
        • Lou Y.
        • GehrkeJ etal
        Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission.
        in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Springer International Publishing AG, Cham, Switzerland2015: 1721-1730
        • Copeland M.
        What's the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?.
        NVIDIA, 2016
        • Damato B.
        • Eleuteri A.
        • Fisher A.C.
        • Coupland S.E.
        • Taktak A.F.
        Artificial neural networks estimating survival probability after treatment of choroidal melanoma.
        Ophthalmology. 2008; 115: 1598-1607
        • Desautels T.
        • Calvert J.
        • Hoffman J.
        • et al.
        Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach.
        JMIR Med Inform. 2016; 4: e28
        • Long Erping
        • Lin Haotian
        • Liu Zhenzhen
        • et al.
        An artificial intelligence platform for the multihospital collaborative management of congenital cataracts.
        Nat Biomed Eng. 2017; 1: 24
        • Esteva A.
        • Kuprel B.
        • Novoa R.A.
        • et al.
        Dermatologist-level classification of skin cancer with deep neural networks.
        Nature. 2017; 542: 115-125
        • Evans R.S.
        Electronic Health Records: Then, Now, and in the Future.
        Yearb Med Inform. 2016; : S48-S61
        • Fang L.
        • Cunefare D.
        • Wang C.
        • Guymer R.H.
        • Li S.
        • Farsiu S.
        Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
        Biomed Opt Express. 2017; 8: 2732-2744
        • Garcia-Martin E.
        • Pablo L.E.
        • Herrero R.
        • et al.
        Neural networks to identify multiple sclerosis with optical coherence tomography.
        Acta Ophthalmol. 2013; 91: e628-e634
        • Gargeya R.
        • Leng T.
        Automated Identification of Diabetic Retinopathy Using Deep Learning.
        Ophthalmology. 2017; 124: 962-969
        • Gong E.
        • Pauly J.M.
        • Wintermark M.
        • Zaharchuk G.
        Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
        J Magn Reson Imaging. 2018; 48: 330-340
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
        JAMA. 2016; 316: 2402-2410
        • Hashimoto D.A.
        • Rosman G.
        • Rus D.
        • Meireles O.R.
        Artificial Intelligence in Surgery: Promises and Perils.
        Ann Surg. 2018; 268: 70-76
        • Iqbal S.
        • Ghani M.U.
        • Saba T.
        • Rehman A.
        Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).
        Microsc Res Tech. 2018; 81: 419-427
        • Jha S.
        • Topol E.J.
        Adapting to Artificial Intelligence; Radiologists and Pathologists as Informatin Specialists.
        JAMA. 2016; 316: 2353-2354
        • Jiang F.
        • Jiang Y.
        • Zhi H.
        • et al.
        Artificial intelligence in healthcare: past, present and future.
        Stroke Vasc Neurol. 2017; 2: 230-243
        • Kaiserman I.
        • Rosner M.
        • Pe'er J.
        Forecasting the prognosis of choroidal melanoma with an artificial neural network.
        Ophthalmology. 2005; 112: 1608
        • Khosravi P.
        • Kazemi E.
        • Imielinski M.
        • Elemento O.
        • Hajirasouliha I.
        Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images.
        EBioMedicine. 2018; 27: 317-328
        • Kim S.J.
        • Cho K.J.
        • Oh S.
        Development of machine learning models for diagnosis of glaucoma.
        PLoS One. 2017; 12: e0177726
        • Lakhani P.
        • Sundaram B.
        Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
        Radiology. 2017; 284: 574-582
        • Leng T.
        • Gargeya R.
        A deep learning approach for automatic identification of referral-warranted diabetic retinopathy.
        Invest Ophthalmol Vis Sci June. 2017; 58: 825
        • Li C.
        • Hou L.
        • Sharma B.Y.
        • et al.
        Developing a new intelligent system for the diagnosis of tuberculous pleural effusion.
        Comput Methods Programs Biomed. 2018; 153: 211-225
        • Li Z.
        • He Y.
        • Keel S.
        • et al.
        Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
        Ophthalmology. 2018; 125: 1199-1206
        • Mazzaferri J.
        • Larrivée B.
        • Cakir B.
        • Sapieha P.
        • Costantino S.
        A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.
        Sci Rep. 2018; 8: 3916
        • Morabito F.C.
        • Campolo M.
        • Mammone N.
        • et al.
        Deep Learning Representation from Electroencephalography of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation from Rapidly Progressive Dementia.
        Int J Neural Syst. 2017; 27: 1650039
        • Muhammad H.
        • Fuchs T.J.
        • De Cuir N.
        • et al.
        Hybrid Deep Learning on Single Wide-Field Optical Coherence Tomography Scans Accurately Classifies Glaucoma Suspects.
        J Glaucoma. 2017; 26: 1086-1094
        • Nemati S.
        • Holder A.
        • Razmi F.
        • Stanley M.D.
        • Clifford G.D.
        • Buchman T.G.
        An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
        Crit Care Med. 2018; 46: 547-553
        • Park S.H.
        • Han K.
        Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction.
        Radiology. 2018; 286: 800-809
        • Parreco J.P.
        • Hidalgo A.E.
        • Badilla A.D.
        • Ilyas O.
        • Rattan R.
        Predicting central line-associated bloodstream infections and mortality using supervised machine learning.
        J Crit Care. 2018; 45: 156-162
        • Patel V.L.
        • Shortliffe E.H.
        • Stefanelli M.
        The Coming of Age of Artificial Intelligence in Medicine.
        Artif Intelligence Med. 2009; 46: 5-17
        • Rathi S.
        • Tsui E.
        • Mehta N.
        The Current State of Teleophthalmology in the United States.
        Ophthalmology. 2017; : 1-6
        • Rohm M.
        • Tresp V.
        • Müller M.
        • et al.
        Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration.
        Ophthalmology. 2018; 125: 1028-1036
        • Recht M.
        • Bryan R.N.
        Artificial Intelligence: Threat or Boon to Radiologists?.
        J Am Coll Radiol. 2017; 14: 1476-1480
        • Schlegl T.
        • Waldstein S.M.
        • Bogunovic H.
        • et al.
        Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
        Ophthalmology. 2018; 125: 549-558
        • Serrano-Aguilar P.
        • Abreu R.
        • Antón-Canalís L.
        • et al.
        Development and validation of a computer-aided diagnostic tool to screen for age-related macular degeneration by optical coherence tomography.
        Br J Ophthalmol. 2012; 96: 503-507
        • Shameer K.
        • Johnson K.W.
        • Glicksberg B.S.
        • Dudley J.T.
        • Sengupta P.P.
        Machine learning in cardiovascular medicine: are we there yet?.
        Heart. 2018; 104: 1156-1164
        • Smolek M.K.
        • Vujosevic S.
        • Piermarocchi S.
        • et al.
        An Expert System for Diabetic Retinopathy Screening With a Non-Mydriatic, Operator-Free Fundus Camera.
        Invest Ophthalmol Vis Sci May. 2008; 49: 2725
        • Solomon I.
        • Maharshak N.
        • Chechik G.
        • et al.
        Applying an artificial neural network to warfarin maintenance dose prediction.
        Isr Med Assoc J. 2004; 6: 732-735
        • Swaminathan S.
        • Qirko K.
        • Smith T.
        • et al.
        A machine learning approach to triaging patients with chronic obstructive pulmonary disease.
        PLoS One. 2017; 12: e0188532
        • Takahashi H.
        • Tampo H.
        • Arai Y.
        • et al.
        Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy.
        PLoS One. 2017; 12: e0179790
        • Thrall J.H.
        • Li X.
        • Li Q.
        • et al.
        Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
        J Am Coll Radiol. 2018; 15: 504-508
        • Ting D.S.W.
        • Cheung C.Y.
        • Lim G.
        • et al.
        Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
        JAMA. 2017; 318: 2211-2223
        • Treder M.
        • Lauermann J.L.
        • Eter N.
        Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 259-265
        • van Putten M.J.A.M.
        • Olbrich S.
        • Arns M.
        Predicting sex from brain rhythms with deep learning.
        Sci Rep. 2018; 8: 3069
        • Venhuizen F.G.
        • van Ginneken B.
        • van Asten F.
        • et al.
        Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography.
        Invest Ophthalmol Vis Sci. 2017; 58: 2318-2328
        • Vivanti R.
        • Joskowicz L.
        • Lev-Cohain N.
        • Ephrat A.
        • Sosna J.
        Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
        Med Biol Eng Comput. 2018; 56: 1699-1713
        • Yasaka K.
        • Akai H.
        • Kunimatsu A.
        • Kiryu S.
        • Abe O.
        Deep learning with convolutional neural network in radiology.
        Jpn J Radiol. 2018; 36: 257-272
        • Yi P.H.
        • Hui F.K.
        • Ting D.S.W.
        Artificial Intelligence and Radiology: Collaboration Is Key.
        J Am Coll Radiol. 2018;
        • Wang D.
        • Khosla A.
        • Gargeya R.
        • Irshad H.
        • Beck A.H.
        Deep learning for identifying metastatic breast cancer.
        (arXiv preprint arXiv:1606.05718)2016
        • Wong T.Y.
        • Bressler N.M.
        Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening.
        JAMA. 2016; 316: 2366-2367
        • Xiao S.
        • Bucher F.
        • Wu Y.
        • et al.
        Fully automated, deep learning segmentation of oxygen-induced retinopathy images.
        JCI Insight. 2017; 2

      Other Cited Material

      1. Artificial intelligence.
        Merriam-Webster.com
        Date accessed: December 20, 2017
      2. Artificial Intelligence, Machine Learning and Deep Learning. Deeplearning4J (DL4J), 2017
        • Nielsen M.
        Neural Networks and Deep Learning.
        Neuralnetworksanddeeplearning.com
        Date accessed: June 1, 2017
      3. Detecting Cancer Metastases on Gigapixel Pathology Images.
        https://arxiv.org/abs/1703.0244269
        Date accessed: June 1, 2017
        • Administration UFaD
        Guidance for industry: electronic source data in clinical investigations.