Choroidal imaging biomarkers

      Abstract

      The choroid is the vascular coat of the eye, and its role has been studied in multiple chorioretinal disorders. Recent advancements in choroidal imaging techniques, including enhanced depth imaging optical coherence tomography, swept source optical coherence tomography, en face optical coherence tomography, and optical coherence tomography angiography have facilitated an in-depth analysis of the choroid. The gradual shift from manual to automated segmentation and binarization methods have led to precise and reproducible measurements of choroidal parameters. These qualitative and quantitative parameters, called choroidal imaging biomarkers, have evolved over the past decade from a simple linear subfoveal choroidal thickness to more complex 3D choroidal reconstruction, thus widening the spectrum encompassing multiple parameters. These biomarkers have provided a better understanding of the pathogenesis, are helpful in diagnostic dilemmas, and, in the future may also help to devise treatment options. The lack of normative data, absence of standardized parameters, and limitations of the imaging techniques, however, have led to ambiguity and difficulty in the interpretation of these variables. We attempt to address these lacunae in the literature and provide a basic understanding of the choroid in both health and disease using these choroidal biomarkers.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Survey of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbouda A.
        • Dubis A.M.
        • Webster A.R.
        • Moosajee M.
        Identifying characteristic features of the retinal and choroidal vasculature in choroideremia using optical coherence tomography angiography.
        Eye. 2018; 32: 563-571
        • Adhi M.
        • Brewer E.
        • Waheed N.K.
        • Duker J.S.
        Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography.
        JAMA Ophthalmol. 2013; 131: 1267-1274
        • Adhi M.
        • Lau M.
        • Liang M.C.
        • Waheed N.K.
        • Duker J.S.
        Analysis of the thickness and vascular layers of the choroid in eyes with geographic atrophy using spectral-domain optical coherence tomography.
        Retina. 2014; 34: 306-312
        • Agarwal A.
        • Agrawal R.
        • Khandelwal N.
        • et al.
        Choroidal Structural Changes in Tubercular Multifocal Serpiginoid Choroiditis.
        Ocul Immunol Inflamm. 2018; 26: 1-7
        • Aggarwal K.
        • Agarwal A.
        • Mahajan S.
        • et al.
        The role of optical coherence tomography angiography in the diagnosis and management of acute vogt-koyanagi-harada disease.
        Ocul Immunol Inflamm. 2018; 26: 142-153
        • Agrawal R.
        • Chhablani J.
        • Tan K.-A.
        • Shah S.
        • Sarvaiya C.
        • Banker A.
        Choroidal vascularity index in central serous chorioretinopathy.
        Retina. 2016; 36: 1646-1651
        • Agrawal R.
        • Gupta P.
        • Tan K.-A.
        • Cheung C.M.G.
        • Wong T.-Y.
        • Cheng C.-Y.
        Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study.
        Sci Rep. 2016; 6: 21090
        • Agrawal R.
        • Li L.K.H.
        • Nakhate V.
        • Khandelwal N.
        • Mahendradas P.
        Choroidal vascularity index in Vogt-Koyanagi-Harada disease: an EDI-OCT derived tool for monitoring disease progression.
        Transl Vis Sci Technol. 2016; 5 (7-7)
        • Agrawal R.
        • Salman M.
        • Tan K.-A.
        • et al.
        Choroidal vascularity index (CVI)-a novel optical coherence tomography parameter for monitoring patients with panuveitis?.
        PLoS One. 2016; 11: e0146344
        • Agrawal R.
        • Wei X.
        • Goud A.
        • Vupparaboina K.K.
        • Jana S.
        • Chhablani J.
        Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography.
        Acta Ophthalmol. 2017; 95: e770-e775
        • Al-Sheikh M.
        • Phasukkijwatana N.
        • Dolz-Marco R.
        • et al.
        Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes.
        Invest Ophthalmol Vis Sci. 2017; 58: 2063-2069
        • Alasil T.
        • Ferrara D.
        • Adhi M.
        • et al.
        En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography.
        Am J Ophthalmol. 2015; 159: 634-643.e2
        • Alonso-Caneiro D.
        • Read S.A.
        • Collins M.J.
        Automatic segmentation of choroidal thickness in optical coherence tomography.
        Biomed Opt Express. 2013; 4: 2795-2812
        • Alshareef R.A.
        • Khuthaila M.K.
        • Januwada M.
        • Goud A.
        • Ferrara D.
        • Chhablani J.
        Choroidal vascular analysis in myopic eyes: evidence of foveal medium vessel layer thinning.
        Int J Retina Vitreous. 2017; 3: 28
        • Alten F.
        • Heiduschka P.
        • Clemens C.R.
        • Eter N.
        Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography.
        Graefes Arch Clin Exp Ophthalmol. 2016; 254: 2165-2173
        • Aoyagi R.
        • Hayashi T.
        • Masai A.
        • et al.
        Subfoveal choroidal thickness in multiple evanescent white dot syndrome.
        Clin Exp Optom. 2012; 95: 212-217
        • Balestrieri E.
        • Daponte P.
        • Rapuano S.
        • Cennamo G.
        Choroidal vessel characterization using en-face optical coherence tomography measurement.
        (Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on: IEEE)2014: 1-6
        • Barteselli G.
        • Bartsch D.-U.
        • El-Emam S.
        • et al.
        Combined depth imaging technique on spectral-domain optical coherence tomography.
        Am J Ophthalmol. 2013; 155: 727-732.e1
        • Barteselli G.
        • Bartsch D.-U.
        • Freeman W.
        Combined depth imaging using optical coherence tomography as a novel imaging technique to visualize vitreoretinal choroidal structures.
        Retina. 2013; 33: 247-248
        • Barteselli G.
        • Chhablani J.
        • El-Emam S.
        • et al.
        Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis.
        Ophthalmology. 2012; 119: 2572-2578
        • Barteselli G.
        • Lee S.N.
        • El-Emam S.
        • et al.
        Macular choroidal volume variations in highly myopic eyes with myopic traction maculopathy and choroidal neovascularization.
        Retina. 2014; 34: 880-889
        • Battaglia Parodi M.
        • Cicinelli M.V.
        • Rabiolo A.
        • Pierro L.
        • Bolognesi G.
        • Bandello F.
        Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography.
        Br J Ophthalmol. 2017; 101: 780-785
        • Boltz A.
        • Luksch A.
        • Wimpissinger B.
        • et al.
        Choroidal blood flow and progression of age-related macular degeneration in the fellow eye in patients with unilateral choroidal neovascularization.
        Invest Ophthalmol Vis Sci. 2010; 51: 4220-4225
        • Bonini Filho M.A.
        • de Carlo T.E.
        • Ferrara D.
        • et al.
        Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography.
        JAMA Ophthalmol. 2015; 133: 899-906
        • Borrelli E.
        • Sarraf D.
        • Freund K.B.
        • Sadda S.R.
        OCT angiography and evaluation of the choroid and choroidal vascular disorders.
        Prog Retin Eye Res. 2018; 67: 30-55
        • Borrelli E.
        • Shi Y.
        • Uji A.
        • et al.
        Topographical Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration.
        Am J Ophthalmol. 2018; 196: 34-43
        • Branchini L.A.
        • Adhi M.
        • Regatieri C.V.
        • et al.
        Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography.
        Ophthalmology. 2013; 120: 1901-1908
        • Brewer E.
        • Adhi M.
        • Waheed N.
        • Duker J.
        Analysis of the Vascular Layers and Morphology of the Choroid in Eyes with Diabetic Retinopathy using Spectral-Domain Optical Coherence Tomography.
        Invest Ophthalmol Vis Sci. 2013; 54 (4854)
        • Caillaux V.
        • Gaucher D.
        • Gualino V.
        • Massin P.
        • Tadayoni R.
        • Gaudric A.
        Morphologic characterization of dome-shaped macula in myopic eyes with serous macular detachment.
        Am J Ophthalmol. 2013; 156: 958-967.e1
        • Carnevali A.
        • Cicinelli M.V.
        • Capuano V.
        • et al.
        Optical coherence tomography angiography: a useful tool for diagnosis of treatment-naive quiescent choroidal neovascularization.
        Am J Ophthalmol. 2016; 169: 189-198
        • Cheng L.
        • Chen X.
        • Weng S.
        • et al.
        Spectral-Domain optical coherence tomography angiography findings in multifocal choroiditis with active lesions.
        Am J Ophthalmol. 2016; 169: 145-161
        • Chhablani J.
        • Barteselli G.
        • Wang H.
        • et al.
        Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 2274-2280
        • Chhablani J.
        • Jonnadula G.B.
        • Rao P.S.
        • Venkata A.
        • Jalali S.
        Choroidal thickness profile in Retinitis Pigmentosa–Correlation with outer retinal structures.
        Saudi J Ophthalmol. 2016; 30: 9-13
        • Chhablani J.
        • Kozak I.
        • Jonnadula G.B.
        • et al.
        Choroidal thickness in macular telangiectasia type 2.
        Retina. 2014; 34: 1819-1823
        • Chhablani J.
        • Nayaka A.
        • Rani P.K.
        • Jalali S.
        Choroidal thickness profile in inherited retinal diseases in Indian subjects.
        Indian J Ophthalmol. 2015; 63: 391
        • Chhablani J.
        • Rao P.S.
        • Venkata A.
        • et al.
        Choroidal thickness profile in healthy Indian subjects.
        Indian J Ophthalmol. 2014; 62: 1060
        • Chhablani J.K.
        • Deshpande R.
        • Sachdeva V.
        • et al.
        Choroidal thickness profile in healthy Indian children.
        Indian J Ophthalmol. 2015; 63: 474
        • Chi Y.T.
        • Yang C.H.
        • Cheng C.K.
        Optical Coherence Tomography Angiography for Assessment of the 3-Dimensional Structures of Polypoidal Choroidal Vasculopathy.
        JAMA Ophthalmol. 2017; 135: 1310-1316
        • Cho H.J.
        • Kim H.S.
        • Jang Y.S.
        • et al.
        Effects of choroidal vascular hyperpermeability on anti–vascular endothelial growth factor treatment for polypoidal choroidal vasculopathy.
        Am J Ophthalmol. 2013; 156: 1192-1200.e1
        • Choi W.
        • Mohler K.J.
        • Potsaid B.
        • et al.
        Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography.
        PLoS One. 2013; 8: e81499
        • Choi W.
        • Moult E.M.
        • Waheed N.K.
        • et al.
        Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy.
        Ophthalmology. 2015; 122: 2532-2544
        • Choma M.A.
        • Sarunic M.V.
        • Yang C.
        • Izatt J.A.
        Sensitivity advantage of swept source and Fourier domain optical coherence tomography.
        Opt Express. 2003; 11: 2183-2189
        • Chung S.E.
        • Kang S.W.
        • Lee J.H.
        • Kim Y.T.
        Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration.
        Ophthalmology. 2011; 118: 840-845
        • Danesh H.
        • Kafieh R.
        • Rabbani H.
        • Hajizadeh F.
        Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts.
        Comput Math Methods Med. 2014; 2014
        • Dansingani K.K.
        • Balaratnasingam C.
        • Naysan J.
        • Freund K.B.
        En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography.
        Retina. 2016; 36: 499-516
        • de Carlo T.E.
        • Bonini Filho M.A.
        • Adhi M.
        • Duker J.S.
        Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography.
        Retina. 2015; 35: 2392-2399
        • De Carlo T.E.
        • Romano A.
        • Waheed N.K.
        • Duker J.S.
        A review of optical coherence tomography angiography (OCTA).
        Int J Retina Vitreous. 2015; 1: 5
        • de Oliveira Dias J.R.
        • Zhang Q.
        • Garcia J.M.B.
        • et al.
        Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography.
        Ophthalmology. 2018; 125: 255-266
        • Dhoot D.S.
        • Huo S.
        • Yuan A.
        • et al.
        Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography.
        Br J Ophthalmol. 2013; 97: 66-69
        • Ding X.
        • Li J.
        • Zeng J.
        • et al.
        Choroidal thickness in healthy Chinese subjects.
        Invest Ophthalmol Vis Sci. 2011; 52: 9555-9560
        • Dodo Y.
        • Suzuma K.
        • Ishihara K.
        • et al.
        Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography.
        Sci Rep. 2017; 7: 5227
        • Dursun A.
        • Ozec A.V.
        • Dogan O.
        • et al.
        Evaluation of choroidal thickness in patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.
        J Ophthalmol. 2016; 2016
        • El Ameen A.
        • Cohen S.Y.
        • Semoun O.
        • et al.
        Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography.
        Retina. 2015; 35: 2212-2218
        • El Matri L.
        • Bouladi M.
        • Chebil A.
        • et al.
        Choroidal thickness measurement in highly myopic eyes using SD-OCT.
        Ophthalmic Surg Lasers Imaging Retina. 2012; 43: S38-S43
        • Ellabban A.A.
        • Tsujikawa A.
        • Ogino K.
        • et al.
        Choroidal thickness after intravitreal ranibizumab injections for choroidal neovascularization.
        Clin Ophthalmol. 2012; 6: 837
        • Esmaeelpour M.
        • Považay B.
        • Hermann B.
        • et al.
        Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 5311-5316
        • Ferrara D.
        • Mohler K.J.
        • Waheed N.
        • et al.
        En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy.
        Ophthalmology. 2014; 121: 719-726
        • Flores-Moreno I.
        • Arias-Barquet L.
        • Rubio-Caso M.J.
        • Ruiz-Moreno J.M.
        • Duker J.S.
        • Caminal J.M.
        En face swept-source optical coherence tomography in neovascular age-related macular degeneration.
        Br J Ophthalmol. 2015; 99: 1260-1267
        • Flores-Moreno I.
        • Lugo F.
        • Duker J.S.
        • Ruiz-Moreno J.M.
        The relationship between axial length and choroidal thickness in eyes with high myopia.
        Am J Ophthalmol. 2013; 155: 314-319.e1
        • Fujiwara T.
        • Imamura Y.
        • Margolis R.
        • Slakter J.S.
        • Spaide R.F.
        Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes.
        Am J Ophthalmol. 2009; 148: 445-450
        • Fujiwara A.
        • Shiragami C.
        • Shirakata Y.
        • Manabe S.
        • Izumibata S.
        • Shiraga F.
        Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes.
        Jpn J Ophthalmol. 2012; 56: 230-235
        • Gal-Or O.
        • Dansingani K.K.
        • Sebrow D.
        • Dolz-Marco R.
        • Freund K.B.
        Inner choroidal flow signal attenuation in pachychoroid disease: Optical Coherence Tomography Angiography.
        Retina. 2018; 38: 1984-1992
        • Gallego-Pinazo R.
        • Dolz-Marco R.
        • Gómez-Ulla F.
        • Mrejen S.
        • Freund K.B.
        Pachychoroid diseases of the macula.
        Med Hypothesis Discov Innov Ophthalmol. 2014; 3: 111
        • Gao S.S.
        • Jia Y.
        • Zhang M.
        • et al.
        Optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT27-OCT36
        • Group B.D.W.
        • Atkinson Jr., A.J.
        • Colburn W.A.
        • et al.
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Grunwald J.E.
        • Hariprasad S.M.
        • DuPont J.
        • et al.
        Foveolar choroidal blood flow in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 1998; 39: 385-390
        • Gupta P.
        • Saw S.M.
        • Cheung C.Y.
        • et al.
        Choroidal thickness and high myopia: a case–control study of young C hinese men in S ingapore.
        Acta Ophthalmol. 2015; 93: e585-e592
        • Hirata M.
        • Tsujikawa A.
        • Matsumoto A.
        • et al.
        Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 4971-4978
        • Hong Y.-J.
        • Makita S.
        • Jaillon F.
        • et al.
        High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.
        Opt Express. 2012; 20: 2740-2760
        • Hosseini H.
        • Nilforushan N.
        • Moghimi S.
        • et al.
        Peripapillary and macular choroidal thickness in glaucoma.
        J Ophthalmic Vis Res. 2014; 9: 154
        • Hu Z.
        • Wu X.
        • Ouyang Y.
        • Ouyang Y.
        • Sadda S.R.
        Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans.
        Invest Ophthalmol Vis Sci. 2013; 54: 1722-1729
        • Ibrahim M.
        • Agarwal S.
        • Vupparaboina K.K.
        • Chhablani J.
        • Richhariya A.
        • Jana S.
        Segmenting and Labeling blood vessels in choroidal Haller's layer: A multiple target tracking approach.
        (Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on: IEEE)2017: 113-116
        • Ikuno Y.
        • Kawaguchi K.
        • Nouchi T.
        • Yasuno Y.
        Choroidal thickness in healthy Japanese subjects.
        Invest Ophthalmol Vis Sci. 2010; 51: 2173-2176
        • Imamura Y.
        • Fujiwara T.
        • Margolis R.
        • Spaide R.F.
        Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy.
        Retina. 2009; 29: 1469-1473
        • Inoue M.
        • Jung J.J.
        • Balaratnasingam C.
        • et al.
        A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of type 1 neovascularization.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT314-OCT323
        • Invernizzi A.
        • Agarwal A.
        • Cozzi M.
        • Viola F.
        • Nguyen Q.D.
        • Staurenghi G.
        Enhanced depth imaging optical coherence tomography features in areas of choriocapillaris hypoperfusion.
        Retina. 2016; 36: 2013-2021
        • Ishikawa S.
        • Taguchi M.
        • Muraoka T.
        • Sakurai Y.
        • Kanda T.
        • Takeuchi M.
        Changes in subfoveal choroidal thickness associated with uveitis activity in patients with Behcet's disease.
        Br J Ophthalmol. 2014; 98: 1508-1513
        • Jain N.
        • Jia Y.
        • Gao S.S.
        • et al.
        Optical Coherence Tomography Angiography in Choroideremia: Correlating Choriocapillaris Loss With Overlying Degeneration.
        JAMA Ophthalmol. 2016; 134: 697-702
        • Jang J.H.
        • Park J.S.
        Choroidal Morphology in Myopic Choroidal Neovascularization and Surrounding Area Measured by SD-OCT.
        Invest Ophthalmol Vis Sci. 2014; 55: 1815
        • Jia Y.
        • Bailey S.T.
        • Hwang T.S.
        • et al.
        Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye.
        Proc Natl Acad Sci U S A. 2015; 112: E2395-E2402
        • Jia Y.
        • Bailey S.T.
        • Wilson D.J.
        • et al.
        Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration.
        Ophthalmology. 2014; 121: 1435-1444
        • Jia Y.
        • Tan O.
        • Tokayer J.
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express. 2012; 20: 4710-4725
        • Jirarattanasopa P.
        • Ooto S.
        • Nakata I.
        • et al.
        Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy.
        Invest Ophthalmol Vis Sci. 2012; 53: 3663-3672
        • Jirarattanasopa P.
        • Ooto S.
        • Tsujikawa A.
        • et al.
        Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy.
        Ophthalmology. 2012; 119: 1666-1678
        • Jonas J.B.
        • Forster T.M.
        • Steinmetz P.
        • Schlichtenbrede F.C.
        • Harder B.C.
        Choroidal thickness in age-related macular degeneration.
        Retina. 2014; 34: 1149-1155
        • Kajić V.
        • Esmaeelpour M.
        • Považay B.
        • Marshall D.
        • Rosin P.L.
        • Drexler W.
        Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model.
        Biomed Opt Express. 2012; 3: 86-103
        • Kim J.T.
        • Lee D.H.
        • Joe S.G.
        • Kim J.-G.
        • Yoon Y.H.
        Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients.
        Invest Ophthalmol Vis Sci. 2013; 54: 3378-3384
        • Koh L.H.L.
        • Agrawal R.
        • Khandelwal N.
        • Sai Charan L.
        • Chhablani J.
        Choroidal vascular changes in age-related macular degeneration.
        Acta Ophthalmol. 2017; 95: e597-e601
        • Kuehlewein L.
        • Bansal M.
        • Lenis T.L.
        • et al.
        Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration.
        Am J Ophthalmol. 2015; 160: 739-748.e2
        • Kuehlewein L.
        • Dansingani K.K.
        • de Carlo T.E.
        • et al.
        Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration.
        Retina. 2015; 35: 2229-2235
        • Kuehlewein L.
        • Sadda S.
        • Sarraf D.
        OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy.
        Eye. 2015; 29: 932
        • Kuroda S.
        • Ikuno Y.
        • Yasuno Y.
        • et al.
        Choroidal thickness in central serous chorioretinopathy.
        Retina. 2013; 33: 302-308
        • Lau T.
        • Wong I.Y.
        • Iu L.
        • et al.
        En-face optical coherence tomography in the diagnosis and management of age-related macular degeneration and polypoidal choroidal vasculopathy.
        Indian J Ophthalmol. 2015; 63: 378
        • Legocki A.T.
        • Adhi M.
        • Weber M.L.
        • Duker J.S.
        Choroidal morphology and vascular analysis in eyes with neovascular age-related macular degeneration using spectral-domain optical coherence tomography.
        Ophthalmic Surg Lasers Imaging Retina. 2016; 47: 618-625
        • Levison A.L.
        • Baynes K.M.
        • Lowder C.Y.
        • Kaiser P.K.
        • Srivastava S.K.
        Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis.
        Br J Ophthalmol. 2017; 101: 616-622
        • Li X.Q.
        • Larsen M.
        • Munch I.C.
        Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students.
        Invest Ophthalmol Vis Sci. 2011; 52: 8438-8441
        • Lindner M.
        • Bezatis A.
        • Czauderna J.
        • et al.
        Choroidal thickness in geographic atrophy secondary to age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2015; 56: 875-882
        • Linsenmeier R.A.
        • Padnick–Silver L.
        Metabolic dependence of photoreceptors on the choroid in the normal and detached retina.
        Invest Ophthalmol Vis Sci. 2000; 41: 3117-3123
        • Liu X.Y.
        • Peng X.Y.
        • Wang S.
        • et al.
        Features of optical coherence tomography for the diagnosis of Vogt–Koyanagi–Harada disease.
        Retina. 2016; 36: 2116-2123
        • Lu H.
        • Boonarpha N.
        • Kwong M.T.
        • Zheng Y.
        Automated segmentation of the choroid in retinal optical coherence tomography images.
        in: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, 2013: 5869-5872
        • Lupidi M.
        • Cerquaglia A.
        • Chhablani J.
        • et al.
        Optical coherence tomography angiography in age-related macular degeneration: The game changer.
        Eur J Ophthalmol. 2018; 28: 349-357
        • Mandadi S.K.R.
        • Agarwal A.
        • Aggarwal K.
        • et al.
        Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis.
        Retina. 2017; 37: 1647-1659
        • Manjunath V.
        • Goren J.
        • Fujimoto J.G.
        • Duker J.S.
        Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography.
        Am J Ophthalmol. 2011; 152: 663-668
        • Manjunath V.
        • Taha M.
        • Fujimoto J.G.
        • Duker J.S.
        Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography.
        Am J Ophthalmol. 2010; 150: 325-329.e1
        • Mapelli C.
        • Dell'Arti L.
        • Barteselli G.
        • et al.
        Choroidal volume variations during childhood.
        Invest Ophthalmol Vis Sci. 2013; 54: 6841-6845
        • Margolis R.
        • Mukkamala S.K.
        • Jampol L.M.
        • et al.
        The expanded spectrum of focal choroidal excavation.
        Arch Ophthalmol. 2011; 129: 1320-1325
        • Margolis R.
        • Spaide R.F.
        A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes.
        Am J Ophthalmol. 2009; 147: 811-815
        • Maruko I.
        • Iida T.
        • Sugano Y.
        • Furuta M.
        • Sekiryu T.
        One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy.
        Retina. 2011; 31: 1921-1927
        • Maruko I.
        • Iida T.
        • Sugano Y.
        • Ojima A.
        • Ogasawara M.
        • Spaide R.F.
        Subfoveal choroidal thickness after treatment of central serous chorioretinopathy.
        Ophthalmology. 2010; 117: 1792-1799
        • Maruko I.
        • Iida T.
        • Sugano Y.
        • et al.
        Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease.
        Retina. 2011; 31: 510-517
      1. Michael A. Klufas NP, NA. Iafe, PS. Prasad, A Agarwal, V Gupta, W Ansari, F Pichi, S Srivastava, K. Bailey Freund, SR. Sadda. Optical Coherence Tomography Angiography Reveals Choriocapillaris Flow Reduction in Placoid Chorioretinitis. Ophthalmol Retina.;1:77–91.

        • Miyata M.
        • Oishi A.
        • Hasegawa T.
        • et al.
        Choriocapillaris flow deficit in Bietti crystalline dystrophy detected using optical coherence tomography angiography.
        Br J Ophthalmol. 2018; 102: 1208-1212
        • Moorthy R.S.
        • Inomata H.
        • Rao N.A.
        Vogt-koyanagi-harada syndrome.
        Surv Ophthalmol. 1995; 39: 265-292
        • Motaghiannezam R.
        • Schwartz D.M.
        • Fraser S.E.
        In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.
        Invest Ophthalmol Vis Sci. 2012; 53: 2337-2348
        • Muakkassa N.W.
        • Chin A.T.
        • de Carlo T.
        • et al.
        Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography.
        Retina. 2015; 35: 2252-2259
        • Nakai K.
        • Gomi F.
        • Ikuno Y.
        • et al.
        Choroidal observations in Vogt–Koyanagi–Harada disease using high-penetration optical coherence tomography.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 1089-1095
        • Nakayama M.
        • Keino H.
        • Okada A.A.
        • et al.
        Enhanced depth imaging optical coherence tomography of the choroid in Vogt–Koyanagi–Harada disease.
        Retina. 2012; 32: 2061-2069
        • Nesper P.L.
        • Roberts P.K.
        • Onishi A.C.
        • et al.
        Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2017; 58: BIO307-BIO315
        • Nesper P.L.
        • Soetikno B.T.
        • Fawzi A.A.
        Choriocapillaris nonperfusion is associated with poor visual acuity in eyes with reticular pseudodrusen.
        Am J Ophthalmol. 2017; 174: 42-55
        • Nickla D.L.
        • Wallman J.
        The multifunctional choroid.
        Prog Retin Eye Res. 2010; 29: 144-168
        • Nunes R.P.
        • Goldhardt R.
        • de Amorim Garcia Filho C.A.
        • et al.
        Spectral-domain optical coherence tomography measurements of choroidal thickness and outer retinal disruption in macular telangiectasia type 2.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 162-170
        • Palejwala N.V.
        • Jia Y.
        • Gao S.S.
        • et al.
        Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography.
        Retina. 2015; 35: 2204-2211
        • Pang C.E.
        • Freund K.B.
        Pachychoroid neovasculopathy.
        Retina. 2015; 35: 1-9
        • Park K.-A.
        • Oh S.Y.
        An optical coherence tomography-based analysis of choroidal morphologic features and choroidal vascular diameter in children and adults.
        Am J Ophthalmol. 2014; 158: 716-723.e2
        • Patel R.C.
        • Gao S.S.
        • Zhang M.
        • et al.
        Optical coherence tomography angiography of choroidal neovascularization in four inherited retinal dystrophies.
        Retina. 2016; 36: 2339-2347
        • Pellegrini M.
        • Acquistapace A.
        • Oldani M.
        • et al.
        Dark Atrophy: An Optical Coherence Tomography Angiography Study.
        Ophthalmology. 2016; 123: 1879-1886
        • Pertl L.
        • Haas A.
        • Hausberger S.
        • et al.
        Change of choroidal volume in untreated central serous chorioretinopathy.
        Retina. 2017; 37: 1792-1796
        • Peyman G.A.
        Choroidal hyperpermeability in central serous choroidopathy: a new concept?.
        Arch Ophthalmol. 1995; 113: 701-702
        • Philip A.-M.
        • Gerendas B.S.
        • Zhang L.
        • et al.
        Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.
        Br J Ophthalmol. 2016; 100: 1372-1376
        • Pilotto E.
        • Guidolin F.
        • Convento E.
        • et al.
        En face optical coherence tomography to detect and measure geographic atrophy.
        Invest Ophthalmol Vis Sci. 2015; 56: 8120-8124
        • Potsaid B.
        • Baumann B.
        • Huang D.
        • et al.
        Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second.
        Opt Express. 2010; 18: 20029-20048
        • Považay B.
        • Hermann B.
        • Hofer B.
        • et al.
        Wide-field optical coherence tomography of the choroid in vivo.
        Invest Ophthalmol Vis Sci. 2009; 50: 1856-1863
        • Rahman W.
        • Chen F.K.
        • Yeoh J.
        • Patel P.
        • Tufail A.
        • Da Cruz L.
        Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 2267-2271
        • Ratra D.
        • Tan R.
        • Jaishankar D.
        • et al.
        Choroidal structural changes and vascularity index in stargardt disease on swept source optical coherence tomography.
        Retina. 2017; 38: 2395-2400
        • Regatieri C.V.
        • Branchini L.
        • Carmody J.
        • Fujimoto J.G.
        • Duker J.S.
        Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography.
        Retina. 2012; 32: 563-568
        • Ruiz-Medrano J.
        • Flores-Moreno I.
        • Montero J.A.
        • Duker J.S.
        • Ruiz-Moreno J.M.
        Morphologic features of the choroidoscleral interface in a healthy population using swept-source optical coherence tomography.
        Am J Ophthalmol. 2015; 160: 596-601.e1
        • Sanchez-Cano A.
        • Orduna E.
        • Segura F.
        • et al.
        Choroidal thickness and volume in healthy young white adults and the relationships between them and axial length, ammetropy and sex.
        Am J Ophthalmol. 2014; 158: 574-583.e1
        • Sayanagi K.
        • Gomi F.
        • Akiba M.
        • Sawa M.
        • Hara C.
        • Nishida K.
        En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy.
        Br J Ophthalmol. 2015; 99: 29-35
        • Schwartz D.M.
        • Fingler J.
        • Kim D.Y.
        • et al.
        Phase-variance optical coherence tomography: a technique for noninvasive angiography.
        Ophthalmology. 2014; 121: 180-187
        • Shah M.
        • Garcia Filho C.A.A.
        • Goldhardt R.
        • et al.
        Subfoveal Choroidal Thickness in Macular Telangiectasia Type 2.
        Invest Ophthalmol Vis Sci. 2012; 53: 2138
        • Shin J.W.
        • Shin Y.U.
        • Lee B.R.
        Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography.
        Ophthalmology. 2012; 119: 1017-1023
        • Singh S.R.
        • Invernizzi A.
        • Rasheed M.A.
        • et al.
        Wide-field Choroidal Vascularity in Healthy Eyes.
        Am J Ophthalmol. 2018; 193: 100-105
        • Sohrab M.A.
        • Smith R.T.
        • Salehi-Had H.
        • Sadda S.R.
        • Fawzi A.A.
        Image registration and multimodal imaging of reticular pseudodrusen.
        Invest Ophthalmol Vis Sci. 2011; 52: 5743-5748
        • Sohrab M.
        • Wu K.
        • Fawzi A.A.
        A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography.
        PLoS One. 2012; 7: e48631
        • Sonoda S.
        • Sakamoto T.
        • Yamashita T.
        • et al.
        Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images.
        Am J Ophthalmol. 2015; 159: 1123-1131.e1
        • Spaide R.F.
        Age-related choroidal atrophy.
        Am J Ophthalmol. 2009; 147: 801-810
        • Spaide R.F.
        • Fujimoto J.G.
        • Waheed N.K.
        Image artifacts in optical coherence tomography angiography.
        Retina. 2015; 35: 2163-2180
        • Spaide R.F.
        • Fujimoto J.G.
        • Waheed N.K.
        • Sadda S.R.
        • Staurenghi G.
        Optical coherence tomography angiography.
        Prog Retin Eye Res. 2018; 64: 1-55
        • Spaide R.F.
        • Hall L.
        • Haas A.
        • et al.
        Indocyanine green videoangiography of older patients with central serous chorioretinopathy.
        Retina. 1996; 16: 203-213
        • Spaide R.F.
        • Koizumi H.
        • Pozonni M.C.
        Enhanced depth imaging spectral-domain optical coherence tomography.
        Am J Ophthalmol. 2008; 146: 496-500
        • Srinath N.
        • Patil A.
        • Kumar V.K.
        • Jana S.
        • Chhablani J.
        • Richhariya A.
        Automated detection of choroid boundary and vessels in optical coherence tomography images.
        (Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE: IEEE)2014: 166-169
        • Sudhalkar A.
        • Chhablani J.K.
        • Venkata A.
        • Raman R.
        • Rao P.S.
        • Jonnadula G.B.
        Choroidal thickness in diabetic patients of Indian ethnicity.
        Indian J Ophthalmol. 2015; 63: 912
        • Sulzbacher F.
        • Pollreisz A.
        • Kaider A.
        • Kickinger S.
        • Sacu S.
        • Schmidt-Erfurth U.
        Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography.
        Acta Ophthalmol. 2017; 95: 414-420
        • Takahashi A.
        • Ito Y.
        • Iguchi Y.
        • Yasuma T.R.
        • Ishikawa K.
        • Terasaki H.
        Axial length increases and related changes in highly myopic normal eyes with myopic complications in fellow eyes.
        Retina. 2012; 32: 127-133
        • Takahashi H.
        • Takase H.
        • Ishizuka A.
        • et al.
        Choroidal thickness in convalescent Vogt–Koyanagi–Harada disease.
        Retina. 2014; 34: 775-780
        • Tan A.C.
        • Dansingani K.K.
        • Yannuzzi L.A.
        • Sarraf D.
        • Freund K.B.
        Type 3 neovascularization imaged with cross-sectional and en face optical coherence tomography angiography.
        Retina. 2017; 37: 234-246
        • Tan A.C.
        • Yzer S.
        • Freund K.B.
        • Dansingani K.K.
        • Phasukkijwatana N.
        • Sarraf D.
        Choroidal changes associated with serous macular detachment in eyes with staphyloma, dome-shaped macula or tilted disk syndrome.
        Retina. 2017; 37: 1544-1554
        • Tan C.S.
        • Ouyang Y.
        • Ruiz H.
        • Sadda S.R.
        Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 261-266
        • Tan K.A.
        • Laude A.
        • Yip V.
        • Loo E.
        • Wong E.P.
        • Agrawal R.
        Choroidal vascularity index–a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus?.
        Acta Ophthalmol. 2016; 94: e612-e616
        • Tan R.
        • Agrawal R.
        • Taduru S.
        • Gupta A.
        • Vupparaboina K.
        • Chhablani J.
        Choroidal Vascularity Index in Retinitis Pigmentosa: An OCT Study.
        Ophthalmic Surg Lasers Imaging Retina. 2018; 49: 191-197
        • Teussink M.M.
        • Breukink M.B.
        • van Grinsven M.J.
        • et al.
        OCT Angiography Compared to Fluorescein and Indocyanine Green Angiography in Chronic Central Serous Chorioretinopathy.
        Invest Ophthalmol Vis Sci. 2015; 56: 5229-5237
        • Toto L.
        • Borrelli E.
        • Mastropasqua R.
        • et al.
        Macular Features in Retinitis Pigmentosa: Correlations Among Ganglion Cell Complex Thickness, Capillary Density, and Macular Function.
        Invest Ophthalmol Vis Sci. 2016; 57: 6360-6366
        • Uppugunduri S.R.
        Automated quantification of Haller’s layer in choroid using swept-source optical coherence tomography.
        2018: 13
        • Vupparaboina K.K.
        • Dansingani K.K.
        • Goud A.
        • et al.
        Quantitative shadow compensated optical coherence tomography of choroidal vasculature.
        Sci Rep. 2018; 8
        • Vupparaboina K.K.
        • Nizampatnam S.
        • Chhablani J.
        • Richhariya A.
        • Jana S.
        Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section.
        Comput Med Imaging Graph. 2015; 46: 315-327
        • Wang M.
        • Zhou Y.
        • Gao S.S.
        • et al.
        Evaluating Polypoidal Choroidal Vasculopathy With Optical Coherence Tomography Angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: Oct526-Oct532
        • Wang S.
        • Wang Y.
        • Gao X.
        • Qian N.
        • Zhuo Y.
        Choroidal thickness and high myopia: a cross-sectional study and meta-analysis.
        BMC Ophthalmol. 2015; 15: 70
        • Wei X.
        • Ting D.S.W.
        • Ng W.Y.
        • Khandelwal N.
        • Agrawal R.
        • Cheung C.M.G.
        Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration.
        Retina. 2017; 37: 1120-1125
        • Xu J.
        • Xu L.
        • Du K.F.
        • et al.
        Subfoveal choroidal thickness in diabetes and diabetic retinopathy.
        Ophthalmology. 2013; 120: 2023-2028
        • Yamazaki T.
        • Koizumi H.
        • Yamagishi T.
        • Kinoshita S.
        Subfoveal choroidal thickness after ranibizumab therapy for neovascular age-related macular degeneration: 12-month results.
        Ophthalmology. 2012; 119: 1621-1627
        • Yang L.
        • Jonas J.B.
        • Wei W.
        Choroidal vessel diameter in central serous chorioretinopathy.
        Acta Ophthalmol. 2013; 91: e358-e362
        • Yang L.
        • Jonas J.B.
        • Wei W.
        Optical coherence tomography–assisted enhanced depth imaging of central serous chorioretinopathy.
        Invest Ophthalmol Vis Sci. 2013; 54: 4659-4665
        • Yeoh J.
        • Rahman W.
        • Chen F.
        • et al.
        Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography.
        Graefes Arch Clin Exp Ophthalmol. 2010; 248: 1719-1728
        • Yiu G.
        • Chiu S.J.
        • Petrou P.A.
        • et al.
        Relationship of central choroidal thickness with age-related macular degeneration status.
        Am J Ophthalmol. 2015; 159: 617-626
        • Zhang L.
        • Lee K.
        • Niemeijer M.
        • Mullins R.F.
        • Sonka M.
        • Abramoff M.D.
        Automated segmentation of the choroid from clinical SD-OCT.
        Invest Ophthalmol Vis Sci. 2012; 53: 7510-7519
        • Zhao J.
        • Wang Y.X.
        • Zhang Q.
        • Wei W.B.
        • Xu L.
        • Jonas J.B.
        Macular Choroidal Small-Vessel Layer, Sattler’s Layer and Haller’s Layer Thicknesses: The Beijing Eye Study.
        Sci Rep. 2018; 8: 4411