Molecular mechanisms and treatments for ocular symblephara

      ABSTRACT

      There are currently no effective methods to prevent or durably treat ocular symblephara, the adhesions between the palpebral and bulbar conjunctiva. How symblephara form at the molecular level is largely unknown. We present here an overview of current clinical symblephara treatments and describe potential molecular mechanisms behind conjunctival adhesion formation that may inform future symblephara treatment and prevention options. Understanding how symblephara form at the molecular level will facilitate treatment development. Preventative therapies may be possible by targeting symblephara progenitor cells immediately after injuries, while novel therapeutics should be aimed at modulating TGF-β pathways and effector cells in conjunctival scarring to treat symblephara formation more effectively.

      KEYWORDS

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Survey of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • El Agha E
        • R Kramann
        • Schneider RK
        • Li X
        • Seeger W
        • Humphreys BD
        • et al.
        Mesenchymal stem cells in fibrotic disease.
        Cell Stem Cell. 2017; 21: 166-177
        • Ahadome SD
        • Abraham DJ
        • Rayapureddi S
        • Saw VP
        • Saban DR
        • Calder VL
        • et al.
        Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring.
        JCI Insight. 2016; 1: 1-17
        • Ahadome SD
        • Mathew R
        • Reyes NJ
        • Mettu PS
        • Cousins SW
        • Calder VL
        • et al.
        Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy.
        JCI Insight. 2016; 1: 1-14
        • Andreev K
        • Zenkel M
        • Kruse F
        • Jünemann A
        • Schlötzer-Schrehardt U.
        Expression of bone morphogenetic proteins (BMPs), their receptors, and activins in normal and scarred conjunctiva: Role of BMP-6 and activin-A in conjunctival scarring?.
        Exp Eye Res. 2006; 83: 1162-1170
        • Beeken LJ
        • Ting DSJ
        • Sidney LE.
        Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders.
        Stem Cells Transl Med. 2021; 10: 39-49
        • Bose T.
        Role of immune cells in the ocular manifestation of pemphigoid diseases.
        Ther Adv Ophthalmol. 2019; 11: 1-9
        • Caplan AI
        • Correa D.
        The MSC: An injury drugstore.
        Cell Stem Cell. 2011; 9: 11-15
        • Cordeiro MF
        • Chang L
        • Lim KS
        • Daniels JT
        • Pleass RD
        • Siriwardena D
        • et al.
        Modulating conjunctival wound healing.
        Eye. 2000; 14: 536-547
        • Dale S
        • Saban D.
        Linking immune responses with fibrosis in allergic eye disease.
        Curr Opin Allergy Clin Immunol. 2016; 176: 139-148
        • 2016 Dart JK.The
        Bowman Lecture Conjunctival curses: Scarring conjunctivitis 30 years on.
        Eye. 2017; 31: 301-332
        • Dituri F
        • Cossu C
        • Mancarella S
        • Giannelli G.
        The Interactivity between TGFβ and BMP Signaling in Organogenesis.
        Fibrosis, and Cancer. Cells. 2019; 8: 1130
        • Elder MJ
        • Lightman S.
        The immunological features and pathophysiology of ocular cicatricial pemphigoid.
        Eye. 1994; 8: 196-199
        • Epstein FH
        • Border WA
        • Noble NA.
        Transforming growth factor β in tissue fibrosis.
        N Engl J Med. 1994; 331: 1286-1292
        • Farid M
        • Lee N.
        Ocular surface reconstruction with keratolimbal allograft for the treatment of severe or recurrent symblepharon.
        Cornea. 2015; 34: 632-636
        • Fatima A
        • Iftekhar G
        • Sangwan VS
        • Vemuganti GK.
        Ocular surface changes in limbal stem cell deficiency caused by chemical injury: A histologic study of excised pannus from recipients of cultured corneal epithelium.
        Eye. 2008; 22: 1161-1167
        • Feizi S
        • Roshandel D.
        Ocular manifestations and management of autoimmune bullous diseases.
        J Ophthalmic Vis Res. 2019; 14: 195-210
        • Finger PT
        • Gougelman HP.
        A Barrier Plaque Designed to Prevent Conjunctival Adhesions.
        1990
      1. Fuchs E. Textbook of Ophthalmology, 1917.

        • Futakuchi A
        • Inoue T
        • Fujimoto T
        • Kuroda U
        • Inoue-Mochita M
        • Takahashi E
        • et al.
        Molecular mechanisms underlying the filtration bleb-maintaining effects of suberoylanilide hydroxamic acid (SAHA).
        Investig Ophthalmol Vis Sci. 2017; 58: 2421-2429
        • Futakuchi A
        InoueT, WeiF, Inoue-mochita M. YAP /TAZ Are Essential for TGF- β 2 – Mediated Conjunctival Fibrosis.
        Invest Ophthalmol Vis Sci. 2018; 59: 3069-3078
        • Ghaddar H
        • Teja S
        • Conlon R
        • Teichman J
        • Yeung S
        • Baig K.
        Ocular surface reconstruction with human amniotic membrane-symblepharon ring complex.
        Can J Ophthalmol. 2016; 51: e129-e131
        • Gregory DG.
        Treatment of acute stevensjohnson syndrome and toxic epidermal necrolysis using amniotic membrane: A review of 10 consecutive cases.
        Ophthalmology [Internet]. 2011; 118 (Available from): 908-914https://doi.org/10.1016/j.ophtha.2011.01.046
        • Hartman DC.
        Use of free grafts in correction of recurrent pterygia, pseudopterygia and symblepharon.
        Calif Med. 1951; 75: 279-280
        • Herrera B
        • Addante A
        • Sánchez A.
        BMP signalling at the crossroad of liver fibrosis and regeneration.
        Int J Mol Sci. 2018; 19: 1-25
        • Hertsenberg AJ
        • Funderburgh JL.
        Stem Cells in the Cornea.
        Vol. 134, Progress in Molecular Biology and Translational Science. 1st ed. Elsevier Inc., 2015: 25-41
        • Myofibroblasts Hinz B.
        Exp Eye Res. 2014; 142: 56-70
        • Holland EJ
        • Luchs J
        • Karpecki PM
        • Nichols KK
        • Jackson MA
        • Sall K
        • et al.
        Lifitegrast for the treatment of dry eye disease: results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3).
        Ophthalmology. 2017; 124: 53-60
        • Holly FJ.
        Biophysical aspects of epithelia adhesion to stroma. 1978; : 552-557
        • Horii T
        • Tsujimoto H
        • Miyamoto H
        • Yamanaka K
        • Tanaka S
        • Torii H
        • et al.
        Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.
        J Biomed Mater Res - Part B Appl Biomater. 2018; 106: 689-696
        • Hu HH
        • Chen DQ
        • Wang YN
        • Feng YL
        • Cao G
        • Vaziri ND
        • et al.
        New insights into TGF-β/Smad signaling in tissue fibrosis.
        Chem Biol Interact. 2018; 292: 76-83
        • Jain S
        • Rastogi A.
        Evaluation of the outcome of amniotic membrane transplantation for ocular surface reconstruction in symblepharon.
        Eye. 2004; 18: 1251-1257
        • Jirsova Katerina K
        • Neuwirth A
        • Kalasova S
        • Vesela V
        • Merjava S
        Mesothelial proteins are expressed in the human cornea.
        Exp Eye Res [Internet]. 2010; 91 (Available from): 623-629https://doi.org/10.1016/j.exer.2010.08.002
        • Jutley G
        • Carpenter D
        • Hau S
        • Booth D
        • Jasim HA
        • Tay E
        • et al.
        Upper and lower conjunctival fornix depth in healthy white caucasian eyes: A method of objective assessment.
        Eye. 2016; 30: 1351-1358
        • Kang Y
        • Li S
        • Liu C
        • Liu M
        • Shi S
        • Xu M
        • et al.
        A rabbit model for assessing symblepharon after alkali burn of the superior conjunctival sac.
        Sci Rep. 2019; 9: 1-10
        • Kara N.
        Sutureless amniotic membrane transplantation with a modified ocular surface ring.
        Can J Ophthalmol. 2018; 53: e46-e48
        • Kaufman HE
        • Thomas EL.
        Prevention and treatment of symblepharon.
        Am J Ophthalmol. 1979; 88: 419-423
        • Kawakita T
        • Kawashima M
        • Murat D
        • Tsubota K
        • Shimazaki J.
        Measurement of fornix depth and area: A novel method of determining the severity of fornix shortening.
        Eye. 2009; 23: 1115-1119
        • Kawasaki S
        • Nishida K
        • Sotozono C
        • Quantock AJ
        • Kinoshita S.
        Conjunctival inflammation in the chronic phase of Stevens-Johnson syndrome.
        Br J Ophthalmol. 2000; 84: 1191-1193
        • Khan IJ
        • Ghauri AJ
        • Hodson J
        • Edmunds MR
        • Cottrell P
        • Evans S
        • et al.
        Defining the limits of normal conjunctival fornix anatomy in a healthy south asian population.
        Ophthalmology. 2014; 121: 492-497
        • Kheirkhah A
        • Blanco G
        • Casas V
        • Hayashida Y
        • Raju VK
        • Tseng SCG.
        Surgical Strategies for Fornix Reconstruction Based on Symblepharon Severity.
        Am J Ophthalmol. 2008; 146: 266-275
        • Kheirkhah A
        • Ghaffari R
        • Kaghazkanani R
        • Hashemi H
        • Behrouz MJ
        • Raju VK.
        A combined approach of amniotic membrane and oral mucosa transplantation for fornix reconstruction in severe symblepharon.
        Cornea. 2013; 32: 155-160
        • Khorshidi HR
        • Kasraianfard A
        • Derakhshanfar A
        • Rahimi S
        • Sharifi A
        • Makarchian HR
        • et al.
        Evaluation of the effectiveness of sodium hyaluronate, sesame oil, honey, and silver nanoparticles in preventing postoperative surgical adhesion formation. An experimental study.
        Acta Cir Bras. 2017; 32: 626-632
        • Lacy HM
        • Bowlin AK
        • Hennings L
        • Scurlock AM
        • Nagarajan UM
        • Rank RG.
        Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections.
        Infect Immun. 2011; 79: 1889-1897
        • Lassance L
        • Marino G
        • Medeiros CS
        • Thangavadivel S
        • Wilson SE.
        Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury.
        Exp Eye Res. 2019; 176: 139-148
        • Lee BWH
        • Tan JCK
        • Radjenovic M
        • Coroneo MT
        • Murrell DF.
        A review of scoring systems for ocular involvement in chronic cutaneous bullous diseases.
        Orphanet J Rare Dis. 2018; 13: 1-11
        • Li T
        • Shao Y
        • Lin Q
        • Zhang D.
        Reversed skin graft combining with lip mucosa transplantation in treating recurrent severe symblepharon: A case report.
        Medicine (Baltimore). 2018; 97: 1-4
        • Lin LX
        • Yuan F
        • Zhang HH
        • Liao NN
        • Luo JW
        • Sun YL.
        Evaluation of surgical anti-Adhesion products to reduce postsurgical intra-Abdominal adhesion formation in a rat model.
        PLoS One. 2017; 12: 1-9
        • Manzouri B
        • Flynn T
        • Ohbayashi M
        • Ono SJ.
        The dendritic cell in allergic conjunctivitis.
        Ocul Surf. 2008; 6: 70-78
        • Marshall BG
        • Shaw RJ.
        T cells and fibrosis.
        Chem Immunol. 2000; 78: 148-158
        • Medeiros CS
        • Marino GK
        • Santhiago MR
        • Wilson SE.
        The corneal basement membranes and stromal fibrosis.
        Investig Ophthalmol Vis Sci. 2018; 59: 4044-4053
        • Meller D
        • Dabul V
        • Tseng SCG.
        Expansion of conjunctival epithelial progenitor cells on amniotic membrane.
        Exp Eye Res. 2002; 74: 537-545
        • Meng XM
        • Nikolic-Paterson DJ
        • Lan HY.
        TGF-β: The master regulator of fibrosis.
        Nat Rev Nephrol. 2016; 12: 325-338
        • Nadri S
        • Soleimani M
        • Kiani J
        • Atashi A
        • Izadpanah R.
        Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells.
        Differentiation [Internet]. 2008; 76 (Available from): 223-231https://doi.org/10.1111/j.1432-0436.2007.00216.x
        • Ogawa Y
        • Shimmura S
        • Kawakita T
        • Yoshida S
        • Kawakami Y
        • Tsubota K.
        Epithelial mesenchymal transition in human ocular chronic graft-versus-host disease.
        Am J Pathol [Internet]. 2009; 175 (Available from): 2372-2381https://doi.org/10.2353/ajpath.2009.090318
        • De Oliveira RC
        • Fibrocytes Wilson SE.
        Wound healing, and corneal fibrosis.
        Invest Ophthalmol Vis Sci. 2020; 61: 28
        • Ong HS
        • Minassian D
        • Rauz S
        • Mehta JS
        • Dart JK.
        Validation of a clinical assessment tool for cicatrising conjunctivitis.
        Ocul Surf [Internet]. 2020; 18 (Available from): 121-129https://doi.org/10.1016/j.jtos.2019.10.010
        • Pflugfelder SC
        • Stern M
        • Zhang S
        • Shojaei A.
        LFA-1/ICAM-1 Interaction as a therapeutic target in dry eye disease.
        J Ocul Pharmacol Ther. 2017; 33: 5-12
        • Quan TE
        • Cowper SE
        • Bucala R.
        The role of circulating fibrocytes in fibrosis.
        Curr Rheumatol Rep. 2006; 8: 145-150
        • Radford CF
        • Rauz S
        • Williams GP
        • Saw VPJ
        • Dart JKG.
        Incidence, presenting features, and diagnosis of cicatrising conjunctivitis in the United Kingdom.
        Eye. 2012; 26: 1199-1208
        • Ramos T
        • Scott D
        • Ahmad S.
        An update on ocular surface epithelial stem cells: cornea and conjunctiva.
        Stem Cells Int. 2015; 2015
        • Razzaque MS
        • Foster CS
        • Ahmed AR.
        Role of collagen-binding heat shock protein 47 and transforming growth factor-β1 in conjunctival scarring in ocular cicatricial pemphigoid.
        Investig Ophthalmol Vis Sci. 2003; 44: 1616-1621
        • Rocher M
        • Robert PY
        • Desmoulière A.
        The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea.
        Eye. 2020; 34: 232-240
        • Saika S
        • Ikeda K
        • Yamanaka O
        • Flanders KC
        • Nakajima Y
        • Miyamoto T
        • et al.
        Therapeutic effects of adenoviral gene transfer of bone morphogenic protein-7 on a corneal alkali injury model in mice.
        Lab Investig. 2005; 85: 474-486
        • Sant'Anna AEBPP
        • Hazarbassanov RM
        • De Freitas D
        • JÁP Gomes
        Minor salivary glands and labial mucous membrane graft in the treatment of severe symblepharon and dry eye in patients with Stevens-Johnson syndrome.
        Br J Ophthalmol. 2012; 96: 234-239
        • Saw VPJ
        • Offiah I
        • Dart RJ
        • Galatowicz G
        • Dart JKG
        • Daniels JT
        • et al.
        Conjunctival interleukin-13 expression in mucous membrane pemphigoid and functional effects of interleukin-13 on conjunctival fibroblasts in vitro.
        Am J Pathol. 2009; 175: 2406-2415
        • Saw VPJ
        • Schmidt E
        • Offiah I
        • Galatowicz G
        • Zillikens D
        • Dart JKG
        • et al.
        Profibrotic phenotype of conjunctival fibroblasts from mucous membrane pemphigoid.
        Am J Pathol. 2011; 178: 187-197
        • Schonberg S
        • Stokkerman TJ.
        Ocular pemphigoid.
        Ophthalmologe. 2001; 98: 584-597
        • Shanbhag SS
        • Chodosh J
        • Saeed HN.
        Sutureless amniotic membrane transplantation with cyanoacrylate glue for acute Stevens-Johnson syndrome/toxic epidermal necrolysis.
        Ocul Surf [Internet]. 2019; 17 (Available from): 560-564https://doi.org/10.1016/j.jtos.2019.03.001
        • Sharma A
        • Anumanthan G
        • Reyes M
        • Chen H
        • Brubaker JW
        • Siddiqui S
        • et al.
        Epigenetic modification prevents excessive wound healing and scar formation after glaucoma filtration surgery.
        Investig Ophthalmol Vis Sci. 2016; 57: 3381-3389
        • Shi W
        • Wang T
        • Gao H
        • Xie L.
        Management of severe ocular burns with symblepharon. Graefe's.
        Arch Clin Exp Ophthalmol. 2009; 247: 101-106
        • Shimazaki J
        • Shinozaki N
        • Tsubota K.
        Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon.
        Br J Ophthalmol. 1998; 82: 235-240
        • Shu DY
        • Lovicu FJ.
        Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis.
        Prog Retin Eye Res. 2017; 60: 44-65
        • Shu DY
        • Wojciechowski MC
        • Lovicu FJ.
        Bone morphogenetic protein-7 suppresses TGFβ2-induced epithelial-mesenchymal transition in the lens: Implications for cataract prevention.
        Investig Ophthalmol Vis Sci. 2017; 58: 781-796
        • Singh G
        • Bhinder HS.
        Evaluation of therapeutic deep anterior lamellar keratoplasty in acute ocular chemical burns.
        Eur J Ophthalmol. 2008; 18: 517-528
        • Singh V
        • Shukla S
        • Ramachandran C
        • Mishra DK
        • Katikireddy KR
        • Lal I
        • et al.
        Science and art of cell-based ocular surface regeneration.
        (Vol. 319)International Review of Cell and Molecular Biology. Elsevier Ltd, 2015: 45-106
        • Stapleton LM
        • Steele AN
        • Wang H
        • Lopez Hernandez H
        • Yu AC
        • Paulsen MJ
        • et al.
        Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier.
        Nat Biomed Eng. 2019; 3: 611-620
        • Stewart RMK
        • Sheridan CM
        • Hiscott PS
        • Czanner G
        • Kaye SB.
        Human conjunctival stem cells are predominantly located in the medial canthal and inferior forniceal areas.
        Invest Ophthalmol Vis Sci. 2015; 56: 2021-2030
        • Sung MS
        • Eom GH
        • Kim SJ
        • Kim SY
        • Heo H
        • Park SW.
        Trichostatin a ameliorates conjunctival fibrosis in a rat trabeculectomy model.
        Investig Ophthalmol Vis Sci. 2018; 59: 3115-3123
        • Tajiri K
        • Sugiyama T
        • Katsumura K
        • Jin D
        • Takai S
        Suppression of conjunctival scarring by chymase inhibitor in a canine symblepharon model.
        Int J Ophthalmol Eye Sci. 2016; : 6-12
        • Tong J
        • Fu Y
        • Xu X
        • Fan S
        • Sun H
        • Liang Y
        • et al.
        TGF-β1 stimulates human Tenon's capsule fibroblast proliferation by miR-200b and its targeting of p27/kip1 and RND3.
        Investig Ophthalmol Vis Sci. 2014; 55: 2747-2756
        • Tovell VE
        • Dahlmann-Noor AH
        • Khaw PT
        • Bailly M.
        Advancing the treatment of conjunctival scarring: A novel ex vivo model.
        Arch Ophthalmol. 2011; 129: 619-627
        • Trzpis M
        • McLaughlin PMJ
        • De Leij LMFH
        • Harmsen MC.
        Epithelial cell adhesion molecule: More than a carcinoma marker and adhesion molecule.
        Am J Pathol. 2007; 171: 386-395
        • Tsai JM
        • Sinha R
        • Seita J
        • Fernhoff N
        • Christ S
        • Koopmans T
        • et al.
        Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers.
        Sci Transl Med. 2018; 10: 1-16
        • Tsuji A
        • Kawai K
        • Fan H
        • Nakagawa Y
        • Suzuki T.
        A case in which tranilast ophthalmic solution was thought to be effective for the prevention of symblepharon andrecurrence after pterygium surgery.
        Tokai J Exp Clin Med. 2011; 36: 120-123
        • Usunier B
        • Benderitter M
        • Tamarat R
        • Chapel A.
        Management of fibrosis: The mesenchymal stromal cells breakthrough.
        Stem Cells Int. 2014; (2014)
        • Vijayaraj P
        • Minasyan A
        • Durra A
        • Karumbayaram S
        • Mehrabi M
        • Aros CJ
        • et al.
        Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule.
        Cell Rep [Internet]. 2019; 29 (Available from): 3488-3505.e9https://doi.org/10.1016/j.celrep.2019.11.019
        • Wang JY
        • ge Han G
        • Wang J
        • Mei HF
        • Yang AH
        BMP-7: Therapeutic target for ocular fibrotic disorders.
        Biosci Hypotheses. 2009; 2: 413-416
        • Whitcup SM
        • Chan CC
        • Kozhich AT
        • Magone MT.
        Blocking ICAM-1 (CD54) and LFA-1 (CD11a) inhibits experimental allergic conjunctivitis.
        Clin Immunol. 1999; 93: 107-113
        • Wilder WH.
        Treatment of symblepharon and restoration of the orbital socket.
        Am J Ophthalmol. 1919; 2: 807-812
        • Williams GP
        • Nightingale P
        • Southworth S
        • Denniston AKO
        • Tomlins PJ
        • Turner S
        • et al.
        Conjunctival neutrophils predict progressive scarring in ocular mucous membrane pemphigoid.
        Investig Ophthalmol Vis Sci. 2016; 57: 5457-5469
        • Williams GP
        • Saw VPJ
        • Saeed T
        • Evans ST
        • Cottrell P
        • Curnow SJ
        • et al.
        Validation of a fornix depth measurer: A putative tool for the assessment of progressive cicatrising conjunctivitis.
        Br J Ophthalmol. 2011; 95: 842-847
        • Williams GP
        • Tomlins PJ
        • Denniston AK
        • Southworth HS
        • Sreekantham S
        • Curnow SJ
        • et al.
        Elevation of conjunctival epithelial CD45INTCD11b+CD16+CD14- neutrophils in ocular Stevens-Johnson syndrome and toxic epidermal necrolysis.
        Investig Ophthalmol Vis Sci. 2013; 54: 4578-4585
        • Yoon S
        • Kang G
        • Eom GH.
        Hdac inhibitors: Therapeutic potential in fibrosis-associated human diseases.
        Int J Mol Sci. 2019; 20: 1-15