Imaging of vascular abnormalities in ocular surface disease

  • Author Footnotes
    † Vito Romano and Bernhard Steger contributed equally.
    Vito Romano
    Correspondence
    Corresponding author. Vito Romano, MD, Corneal and External Eye Disease Service, Royal Liverpool University Hospital, Liverpool, United Kingdom L7 8XP Phone: 0151 706 3997
    Footnotes
    † Vito Romano and Bernhard Steger contributed equally.
    Affiliations
    Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK

    Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
    Search for articles by this author
  • Author Footnotes
    † Vito Romano and Bernhard Steger contributed equally.
    Bernhard Steger
    Footnotes
    † Vito Romano and Bernhard Steger contributed equally.
    Affiliations
    Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
    Search for articles by this author
  • Mohammad Ahmad
    Affiliations
    Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK
    Search for articles by this author
  • Giulia Coco
    Affiliations
    Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK

    Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
    Search for articles by this author
  • Luca Pagano
    Affiliations
    Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK

    Humanitas Clinical and Research, Rozzano (Mi) Italy
    Search for articles by this author
  • Sajjad Ahmad
    Affiliations
    UCL Institute of Ophthalmology, London, UK
    Search for articles by this author
  • Yitian Zhao
    Affiliations
    Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK

    Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
    Search for articles by this author
  • Yalin Zheng
    Affiliations
    Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
    Search for articles by this author
  • Stephen B Kaye
    Affiliations
    Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK

    Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
    Search for articles by this author
  • Author Footnotes
    † Vito Romano and Bernhard Steger contributed equally.

      Abstract

      The vascular system of the ocular surface plays a central role in infectious, autoimmune, inflammatory, traumatic and neoplastic diseases. The development, application, and monitoring of treatments for vascular abnormalities depends on the in vivo analysis of the ocular surface vasculature. Until recently, ocular surface vascular imaging was confined to biomicroscopic and color photographic assessment, both limited by poor reproducibility and the inability to image lymphatic vasculature in vivo. The evolvement and clinical implementation of innovative imaging modalities including confocal microscopy, intravenous, and optical coherence tomography–based angiography now allows standardized quantitative and functional vascular assessment with potential applicability to automated analysis algorithms and diagnostics.

      Keywords

      Abbreviations:

      CoNV (Corneal neovascularization), FA (Fluorescein angiography), ICGA (Indocianin green angiography), ICG (Indicianin green), IVCM (In vivo confocal microscopy), OCT (Optical coherence tomography), OCT-A (Optical coherence tomography angiography), HSV (Herpes simplex virus), MCA (Marginal corneal arcades), LCA (Lymphatic corneal arcade), FSLB (Functional slit lamp biomicroscocpy), PAM (Photoacoustic microscopy), ROI (Region of interest), DSA (Digital subtraction analysis), VBR (Validated Bulbar Redness), PDI (Pixel densitometry index), HSK (Herpes simplex keratitis), LSCD (Limbal stem cell deficiency), OSN (Ocular surface neoplasia), AI (Artificial intelligence)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Survey of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abelson M.B.
        • Schaefer K.
        Conjunctivitis of allergic origin: Immunologic mechanisms and current approaches to therapy.
        Surv Ophthalmol. 1993; 38: 115-132https://doi.org/10.1016/0039-6257(93)90036-7
        • Aicher N.T.
        • Nagahori K.
        • Inoue M.
        • Itoh Y.
        • Hirakata A.
        Vascular density of anterior segment of eye determined by optical coherence tomography angiography and slit-lamp photography.
        Ophthalmic Res. 2020; 63https://doi.org/10.1159/000506953
        • Akagi T.
        • Uji A.
        • Huang A.S.
        • et al.
        Conjunctival and Intrascleral Vasculatures Assessed Using Anterior Segment Optical Coherence Tomography Angiography in Normal Eyes.
        Am J Ophthalmol. 2018; 196: 1-9https://doi.org/10.1016/j.ajo.2018.08.009
        • Albuquerque R.J.C.
        • Hayashi T.
        • Cho W.G.
        • et al.
        Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth.
        Nat Med. 2009; 15: 1023-1030https://doi.org/10.1038/nm.2018
        • Amparo F.
        • Wang H.
        • Emami-Naeini P.
        • Karimian P.
        • Dana R.
        The ocular redness index: A novel automated method for measuring ocular injection.
        Investig Ophthalmol Vis Sci. 2013; 54: 4821-4826https://doi.org/10.1167/iovs.13-12217
        • Ang M.
        • Cai Y.
        • Macphee B.
        • et al.
        Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation.
        Br J Ophthalmol. 2016; 100: 1557-1563https://doi.org/10.1136/bjophthalmol-2015-307706
        • Ang M.
        • Sim D.A.
        • Keane P.A.
        • et al.
        Optical coherence tomography angiography for anterior segment vasculature imaging.
        Ophthalmology. 2015; 122: 1740-1747https://doi.org/10.1016/j.ophtha.2015.05.017
        • Anijeet D.R.
        • Zheng Y.
        • Tey A.
        • Hodson M.
        • Sueke H.
        • Kaye S.B.
        Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography.
        Investig Ophthalmol Vis Sci. 2012; 53: 650-658https://doi.org/10.1167/iovs.11-8014
        • Bachmann B.
        • Taylor R.S.
        • Cursiefen C.
        Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: An evidence-based meta-analysis.
        Ophthalmology. 2010; 117https://doi.org/10.1016/j.ophtha.2010.01.039
        • Baudouin C.
        • Barton K.
        • Cucherat M.
        • Traverso C.
        The measurement of bulbar hyperemia: Challenges and pitfalls.
        Eur J Ophthalmol. 2015; 25: 273-279https://doi.org/10.5301/ejo.5000626
        • Benayoun Y.
        • Rosenberg R.
        • Casse G.
        • Dallaudière B.
        • Robert P.Y.
        Imagerie et quantification de la néovascularisation cornéenne.
        J Fr Ophtalmol. 2013; 36: 693-703https://doi.org/10.1016/j.jfo.2013.04.006
        • Berkow J.
        • Flower R.
        • Orth D.
        • Kelley J.
        Fluorescein and Indocyanine Green Angiography: Technique and Interpretation.
        2nd Ed. Ophthalmology Monograph 5. San Francisco: American Academy of Ophthalmology, 1997
        • Binotti W.W.
        • Nosé R.M.
        • Koseoglu N.D.
        • Dieckmann G.M.
        • Kenyon K.
        • Hamrah P.
        The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency.
        Ocul Surf. 2020; (Published online)https://doi.org/10.1016/j.jtos.2020.04.007
        • Bizheva K.
        • Hutchings N.
        • Sorbara L.
        • Moayed A.A.
        • Simpson T.
        In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT.
        Biomed Opt Express. 2011; 2: 1794https://doi.org/10.1364/boe.2.001794
        • Böhringer D.
        • Spierings E.
        • Enczmann J.
        • et al.
        Matching of the minor histocompatibility antigen HLA-A1/H-Y may improve prognosis in corneal transplantation.
        Transplantation. 2006; 82: 1037-1041https://doi.org/10.1097/01.tp.0000235908.54766.44
        • Bron A.
        • Easty D.
        Fluorescein angiography of the globe and anterior segment.
        Trans Ophthalmol Soc U K. 1970; 90 (Accessed October 6, 2020): 339-367
      1. Bron A Tripathi R Tripathi B Wolff's Anatomy of the Eye and Orbit. Eds. Chapman and Hall Medical, 8th Ed. London, UK1997
        • Bron A.J.
        A simple scheme for documenting corneal disease.
        Br J Ophthalmol. 1973; 57: 629-634https://doi.org/10.1136/bjo.57.9.629
        • Bron A.J.
        • Easty D.L.
        Fluorescein angiography of the globe and anterior segment.
        Trans Ophthalmol Soc U K. 1970; 90 (Accessed September 12, 2020): 339-367
        • Brouwer N.J.
        • Marinkovic M.
        • Bleeker J.C.
        • Luyten G.P.M.
        • Jager M.J.
        Anterior Segment OCTA of melanocytic lesions of the conjunctiva and iris.
        Am J Ophthalmol. 2021; 222: 137-147https://doi.org/10.1016/j.ajo.2020.09.009
        • Brunner M.
        • Romano V.
        • Steger B.
        • et al.
        Imaging of corneal neovascularization: Optical coherence tomography angiography and fluorescence angiography.
        Investig Ophthalmol Vis Sci. 2018; 59: 1263-1269https://doi.org/10.1167/iovs.17-22035
        • Brunner M.
        • Romano V.
        • Steger B.
        • et al.
        Imaging of corneal neovascularization: Optical coherence tomography angiography and fluorescence angiography.
        Investig Ophthalmol Vis Sci. 2018; 59: 1263-1269https://doi.org/10.1167/iovs.17-22035
        • Brunner M.
        • Steger B.
        • Romano V.
        • et al.
        Identification of Feeder Vessels in Ocular Surface Neoplasia Using Indocyanine Green Angiography: A Preliminary Report.
        Curr Eye Res. 2018; 43: 163-169https://doi.org/10.1080/02713683.2017.1387273
        • Chan C.M.L.
        • Chew P.T.K.
        • Alsagoff Z.
        • Wong J.S.
        • Tan D.T.H.
        Vascular patterns in pterygium and conjunctival autografting: A pilot study using indocyanine green anterior segment angiography.
        Br J Ophthalmol. 2001; 85: 350-353https://doi.org/10.1136/bjo.85.3.350
        • Chan G.
        • Balaratnasingam C.
        • Yu P.K.
        • et al.
        Quantitative morphometry of perifoveal capillary networks in the human retina.
        Investig Ophthalmol Vis Sci. 2012; 53: 5502-5514https://doi.org/10.1167/iovs.12-10265
        • Chan S.Y.
        • Pan C.T.
        • Feng Y.
        Localization of corneal neovascularization using optical coherence tomography angiography.
        Cornea. 2019; 38: 888-895https://doi.org/10.1097/ICO.0000000000001931
        • Chang J.H.
        • Gabison E.E.
        • Kato T.
        • Azar D.T.
        Corneal neovascularization.
        Curr Opin Ophthalmol. 2001; 12: 242-249https://doi.org/10.1097/00055735-200108000-00002
        • Chen W.
        • Batawi H.I.M.
        • Alava J.R.
        • et al.
        Bulbar conjunctival microvascular responses in dry eye.
        Ocul Surf. 2017; 15: 193-201https://doi.org/10.1016/j.jtos.2016.12.002
        • Chong T.
        • Simpson T.
        • Fonn D.
        The repeatability of discrete and continuous anterior segment grading scales.
        Optom Vis Sci. 2000; 77: 244-251https://doi.org/10.1097/00006324-200005000-00011
      2. Conjunctival circulation in relation to circulatory disorders - PubMed Accessed September 10, 2020. https://pubmed.ncbi.nlm.nih.gov/5233050/

        • Cursiefen C.
        • Cao J.
        • Chen L.
        • et al.
        Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival.
        Investig Ophthalmol Vis Sci. 2004; 45: 2666-2673https://doi.org/10.1167/iovs.03-1380
        • Cursiefen C.
        • Chen L.
        • Borges L.P.
        • et al.
        VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment.
        J Clin Invest. 2004; 113: 1040-1050https://doi.org/10.1172/JCI20465
        • Dana M.R.
        • Schaumberg D.A.
        • Kowal V.O.
        • et al.
        Corneal neovascularization after penetrating keratoplasty.
        Cornea. 1995; 14: 604-609https://doi.org/10.1097/00003226-199511000-00014
        • Deán-Ben X.L.
        • Bay E.
        • Razansky D.
        Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data.
        Sci Rep. 2014; 4https://doi.org/10.1038/srep05878
        • Easty D.L.
        • Bron A.J.
        Fluorescein angiography of the anterior segment its value in corneal disease.
        Br J Ophthalmol. 1971; 55: 671-682https://doi.org/10.1136/bjo.55.10.671
        • Ecoiffier T.
        • Yuen D.
        • Chen L.
        Differential distribution of blood and lymphatic vessels in the murine cornea.
        Investig Ophthalmol Vis Sci. 2010; 51: 2436-2440https://doi.org/10.1167/iovs.09-4505
        • Efron N.
        Chapter 1 - Anterior eye examination.
        in: Efron N Contact Lens Complications (Third Edition). Editor. London: W.B. Saunders, 2012: 1-20
        • Efron N.
        Grading scales.
        Optician. 2000; 219: 44-45
        • Efron N.
        Grading scales for contact lens complications.
        Ophthalmic and Physiological Optics. 1998; 18 (Ophthalmic Physiol Opt): 182-186https://doi.org/10.1016/S0275-5408(97)00066-5
        • Efron N.
        • Morgan P.B.
        • Katsara S.S.
        Validation of grading scales for contact lens complications.
        Ophthalmic Physiol Opt. 2001; 21: 17-29https://doi.org/10.1046/j.1475-1313.2001.00575.x
      3. Ehrlich P. 2020 Dtsch, Med. Wschr. March 181. Dtsch, Med Wschr.

      4. xxx Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC) - PubMed. Accessed September 10, 2020. https://pubmed.ncbi.nlm.nih.gov/19693288/

        • Faraj L.A.
        • Said D.G.
        • Al-Aqaba M.
        • Otri A.M.
        • Dua H.S.
        Clinical evaluation and characterisation of corneal vascularisation.
        Br J Ophthalmol. 2016; 100: 315-322https://doi.org/10.1136/bjophthalmol-2015-306686
        • Fingler J.
        • Schwartz D.
        • Yang C.
        • Fraser S.E.
        Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography.
        Opt Express. 2007; 15: 12636https://doi.org/10.1364/oe.15.012636
        • Fujimoto J.
        • Huang D.
        Foreword: 25 years of optical coherence tomography.
        Investig Ophthalmol Vis Sci. 2016; 57 (OCTi-OCTii)https://doi.org/10.1167/iovs.16-20269
        • Fung S.S.M.
        • Stewart R.M.K.
        • Dhallu S.K.
        • et al.
        Anterior segment optical coherence tomographic angiography assessment of acute chemical injury.
        Am J Ophthalmol. 2019; 205: 165-174https://doi.org/10.1016/j.ajo.2019.04.021
        • Gao S.S.
        • Jia Y.
        • Zhang M.
        • et al.
        Optical coherence tomography angiography.
        Investig Ophthalmol Vis Sci. 2016; 57 (OCT27-OCT36)https://doi.org/10.1167/iovs.15-19043
        • Goldberg M.
        • Bron A.
        Limbal palisades of Vogt.
        Trans Am Ophthalmol Soc. 1982; 80: 155-171
        • Graves B.
        Certain clinical features of the normal limbus.
        Br J Ophthalmol. 1934; 18: 369-387https://doi.org/10.1136/bjo.18.7.369
        • Guex-Crosier Y.
        • Durig J.
        Anterior segment indocyanine green angiography in anterior scleritis and episcleritis.
        Ophthalmology. 2003; 110: 1756-1763https://doi.org/10.1016/S0161-6420(03)00567-0
        • Guthoff R.F.
        • Zhivov A.
        • Stachs O.
        In vivo confocal microscopy, an inner vision of the cornea - A major review.
        Clin Exp Ophthalmol. 2009; 37: 100-117https://doi.org/10.1111/j.1442-9071.2009.02016.x
        • Harper R.N.
        • Moore M.A.
        • Marr M.C.
        • Watts L.E.
        • Hutchins P.M.
        Arteriolar rarefaction in the conjunctiva of human essential hypertensives.
        Microvasc Res. 1978; 16: 369-372https://doi.org/10.1016/0026-2862(78)90070-5
      5. Hau S.C., Devarajan K., Ang M. Anterior segment optical coherence tomography angiography and optical coherence tomography in the evaluation of episcleritis and scleritis. Ocul Immunol Inflamm. Published online 2019. doi:10.1080/09273948.2019.1682617.

        • Hope-Ross M.
        • Yannuzzi L.A.
        • Gragoudas E.S.
        • et al.
        Adverse reactions due to indocyanine green.
        Ophthalmology. 1994; 101: 529-533https://doi.org/10.1016/S0161-6420(94)31303-0
        • Horak F.
        • Berger U.
        • Menapace R.
        • Schuster N.
        Quantification of conjunctival vascular reaction by digital imaging.
        J Allergy Clin Immunol. 1996; 98: 495-500https://doi.org/10.1016/S0091-6749(96)70081-7
        • Hu S.
        • Rao B.
        • Maslov K.
        • Wang L V.
        Label-free photoacoustic ophthalmic angiography.
        Opt Lett. 2010; 35: 1https://doi.org/10.1364/ol.35.000001
        • Hu Y.
        • Matsumoto Y.
        • Adan E.S.
        • et al.
        Corneal in vivo confocal scanning laser microscopy in patients with atopic keratoconjunctivitis.
        Ophthalmology. 2008; 115: 2004-2012https://doi.org/10.1016/j.ophtha.2008.05.010
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254 (Accessed January 17, 2019): 1178-1181
        • Indocyanine green angiography
        American Academy of Ophthalmology.
        Ophthalmology. 1998; 105: 1564-1569
        • Ivanov K.P.
        • Kalinina M.K.
        • Levkovich Y.I.
        Blood flow velocity in capillaries of brain and muscles and its physiological significance.
        Microvasc Res. 1981; 22: 143-155https://doi.org/10.1016/0026-2862(81)90084-4
        • Jalbert I.
        • Stapleton F.
        • Papas E.
        • Sweeney D.F.
        • Coroneo M.
        In vivo confocal microscopy of the human cornea.
        Br J Ophthalmol. 2003; 87: 225-236https://doi.org/10.1136/bjo.87.2.225
        • Jensen V.A.
        • Lundbœk K.
        Fluorescense angiography of the iris in recent and long-term diabetes preliminary communication.
        Acta Ophthalmol. 1968; 46: 584-585https://doi.org/10.1111/j.1755-3768.1968.tb02854.x
        • Jeon M.
        • Kim C.
        Multimodal photoacoustic tomography.
        IEEE Trans Multimed. 2013; : 975-982
        • Jeon M.
        • Kim J.
        • Kim C.
        Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo.
        Med Biol Eng Comput. 2016; 54: 283-294https://doi.org/10.1007/s11517-014-1182-6
        • Jeon S.
        • Kim J.
        • Lee D.
        • Baik J.W.
        • Kim C.
        Review on practical photoacoustic microscopy.
        Photoacoustics. 2019; 15https://doi.org/10.1016/j.pacs.2019.100141
        • Jeon S.
        • Song H.B.
        • Kim J.
        • et al.
        In Vivo photoacoustic imaging of anterior ocular vasculature: A random sample consensus approach.
        Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-04334-z
        • Jia Y.
        • Tan O.
        • Tokayer J.
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express. 2012; 20: 4710https://doi.org/10.1364/oe.20.004710
        • Käsmann-Kellner B.
        • Latta L.
        • Fries F.N.
        • Viestenz A.
        • Seitz B.
        Diagnostic impact of anterior segment angiography of limbal stem cell insufficiency in PAX6-related aniridia.
        Clin Anat. 2018; 31: 392-397https://doi.org/10.1002/ca.22987
        • Kim Y.J.
        • Yoo S.H.
        • Chung J.K.
        Reconstruction of the limbal vasculature after limbal-conjunctival autograft transplantation in pterygium surgery: An angiography study.
        Investig Ophthalmol Vis Sci. 2014; 55: 7925-7933https://doi.org/10.1167/iovs.14-15288
        • Kirwan R.P.
        • Zheng Y.
        • Tey A.
        • Anijeet D.
        • Sueke H.
        • Kaye S.B.
        Quantifying changes in corneal neovascularization using fluorescein and indocyanine green angiography.
        Am J Ophthalmol. 2012; 154 (e2): 850-858https://doi.org/10.1016/j.ajo.2012.04.021
        • Konerding M.A.
        • Fait E.
        • Gaumann A.
        3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon.
        Br J Cancer. 2001; 84: 1354-1362https://doi.org/10.1054/bjoc.2001.1809
        • Kukreja I.
        • Kapoor P.
        • Deshmukh R.
        • Kulkarni V.
        VEGF and CD 34: A correlation between tumor angiogenesis and microvessel density-an immunohistochemical study.
        J Oral Maxillofac Pathol. 2013; 17: 367-373https://doi.org/10.4103/0973-029X.125200
        • Kwiterovich K.A.
        • Maguire M.G.
        • Murphy R.P.
        • et al.
        Frequency of Adverse systemic reactions after fluorescein angiography: Results of a prospective study.
        Ophthalmology. 1991; 98: 1139-1142https://doi.org/10.1016/S0161-6420(91)32165-1
        • Lawman S.
        • Dong Y.
        • Williams B.M.
        • et al.
        High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography.
        Opt Express. 2016; 24: 12395https://doi.org/10.1364/oe.24.012395
        • Lee P.
        • Wang C.C.
        • Adamis A.P.
        Ocular neovascularization: An epidemiologic review.
        Surv Ophthalmol. 1998; 43: 245-269https://doi.org/10.1016/S0039-6257(98)00035-6
        • Lee W D.i.
        • Devarajan K.
        • Chua J.
        • Schmetterer L.
        • Mehta J.S.
        • Ang M.
        Optical coherence tomography angiography for the anterior segment.
        Eye Vis. 2019; 6https://doi.org/10.1186/s40662-019-0129-2
        • Li P.
        • An L.
        • Reif R.
        • Shen T.T.
        • Johnstone M.
        • Wang R.K.
        In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography.
        Biomed Opt Express. 2011; 2: 3109https://doi.org/10.1364/boe.2.003109
        • Ling S.
        • Lin H.
        • Liang L.
        • et al.
        Development of new lymphatic vessels in alkali-burned corneas.
        Acta Ophthalmol. 2009; 87: 315-322https://doi.org/10.1111/j.1755-3768.2008.01349.x
        • Liu S.
        • Romano V.
        • Steger B.
        • Kaye S.B.
        • Hamill K.J.
        • Willoughby C.E.
        Gene-based antiangiogenic applications for corneal neovascularization.
        Surv Ophthalmol. 2018; 63: 193-213https://doi.org/10.1016/j.survophthal.2017.10.006
        • Liu W.
        • Schultz K.M.
        • Zhang K.
        • et al.
        In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy.
        Photoacoustics. 2014; 2: 81-86https://doi.org/10.1016/j.pacs.2014.04.003
        • Liu W.
        • Zhang H.F.
        Photoacoustic imaging of the eye: A mini review.
        Photoacoustics. 2016; 4: 112-123https://doi.org/10.1016/j.pacs.2016.05.001
        • Liu Y.C.
        • Devarajan K.
        • Tan T.E.
        • Ang M.
        • Mehta J.S.
        Optical coherence tomography angiography for evaluation of reperfusion after pterygium surgery.
        Am J Ophthalmol. 2019; 207: 151-158https://doi.org/10.1016/j.ajo.2019.04.003
        • Liu Z.
        • Karp C.L.
        • Galor A.
        • Al Bayyat G.J.
        • Jiang H.
        • Wang J.
        Role of optical coherence tomography angiography in the characterization of vascular network patterns of ocular surface squamous neoplasia.
        Ocul Surf. 2020; 18: 926-935https://doi.org/10.1016/j.jtos.2020.03.009
        • Liu Z.
        • Wang H.
        • Jiang H.
        • Gameiro G.R.
        • Wang J.
        Quantitative analysis of conjunctival microvasculature imaged using optical coherence tomography angiography.
        Eye Vis. 2019; 6https://doi.org/10.1186/s40662-019-0130-9
        • Lockard I.
        • Debacker H.
        Conjunctival circulation in relation to circulatory disorders.
        J S C Med Assoc. 1967; 63 (Accessed October 6, 2020): 201-206
        • Mackman G.
        • Polack F.
        • Sidrys L.
        Fluorescein angiography of soft contact lens induced vascularization in penetrating keratoplasty - PubMed.
        Ophthalmic Surg. 1985; 16 (Accessed September 12, 2020): 157-161
        • Maguire M.G.
        • Stark W.J.
        • Gottsch J.D.
        • et al.
        Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group.
        Ophthalmology. 1994; 101 (Accessed October 20, 2018): 1536-1547
      6. Marvin Minsky, inventorMicroscopy apparatus. US1957 (filed), 1961 (granted).

        • McDonald D.M.
        • Choyke P.L.
        Imaging of angiogenesis: From microscope to clinic.
        Nat Med. 2003; 9: 713-725https://doi.org/10.1038/nm0603-713
        • McMonnies C.W.
        • Chapman-Davies A.
        Assessment of conjunctival hyperemia in contact lens wearers. part I.
        Optom Vis Sci. 1987; 64: 246-250https://doi.org/10.1097/00006324-198704000-00003
        • Meyer P.A.R.
        Patterns of blood flow in episcleral vessels studied by low-dose fluorescein videoangiography.
        Eye. 1988; 2: 533-546https://doi.org/10.1038/eye.1988.104
        • Meyer P.A.R.
        • Watson P.G.
        Low dose fluorescein angiography of the conjunctiva and episclera.
        Br J Ophthalmol. 1987; 71: 2-10https://doi.org/10.1136/bjo.71.1.2
        • Mimura T.
        • Amano S.
        • Usui T.
        • Kaji Y.
        • Oshika T.
        • Ishii Y.
        Expression of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in corneal lymphangiogenesis.
        Exp Eye Res. 2001; 72: 71-78https://doi.org/10.1006/exer.2000.0925
        • Mitsui Y.
        • Matsubara M.
        • Kanagawa M.
        Fluorescence irido-corneal photography.
        Br J Ophthalmol. 1969; 53: 505-512https://doi.org/10.1136/bjo.53.8.505
        • Nagendran M.
        • Chen Y.
        • Lovejoy C.A.
        • et al.
        Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies in medical imaging.
        BMJ. 2020; 368https://doi.org/10.1136/bmj.m689
        • Nagy J.A.
        • Benjamin L.
        • Zeng H.
        • Dvorak A.M.
        • Dvorak H.F.
        Vascular permeability, vascular hyperpermeability and angiogenesis.
        Angiogenesis. 2008; 11: 109-119https://doi.org/10.1007/s10456-008-9099-z
        • Nieuwenhuizen J.
        • Watson P.G.
        • Jager M.J.
        • Emmanouilidis-van der Spek K.
        • Keunen J.E.E.
        The value of combining anterior segment fluorescein angiography with indocyanine green angiography in scleral inflammation.
        Ophthalmology. 2003; 110: 1653-1666https://doi.org/10.1016/S0161-6420(03)00487-1
        • Nuttall A.L.
        Velocity of red blood cell flow in capillaries of the guinea pig cochlea.
        Hear Res. 1987; 27: 121-128https://doi.org/10.1016/0378-5955(87)90013-X
      7. Ocular lymphatics: state-of-the-art review - PubMed. Accessed September 10, 2020. https://pubmed.ncbi.nlm.nih.gov/19725271/

        • Oie Y.
        • Nishida K.
        Evaluation of corneal neovascularization using optical coherence tomography angiography in patients with limbal stem cell deficiency.
        Cornea. 2017; 36: S72-S75https://doi.org/10.1097/ICO.0000000000001382
        • Olver J.M.
        • McCartney A.C.E.
        Anterior segment vascular casting.
        Eye. 1989; 3: 302-307https://doi.org/10.1038/eye.1989.43
        • Owen C.G.
        • Newsom R.S.B.
        • Rudnicka A.R.
        • Barman S.A.
        • Woodward E.G.
        • Ellis T.J.
        Diabetes and the tortuosity of vessels of the bulbar conjunctiva.
        Ophthalmology. 2008; 115https://doi.org/10.1016/j.ophtha.2008.02.009
        • Palme C.
        • Ahmad S.
        • Romano V.
        • et al.
        En-face analysis of the human limbal lymphatic vasculature.
        Exp Eye Res. 2020; 201108278https://doi.org/10.1016/j.exer.2020.108278
        • Palme C.
        • Romano V.
        • Brunner M.
        • Vinciguerra R.
        • Kaye S.B.
        • Steger B.
        Functional staging of corneal neovascularization using fluorescein and indocyanine green angiography.
        Transl Vis Sci Technol. 2018; 7https://doi.org/10.1167/tvst.7.5.15
      8. Palme C., Wanner A., Romano V., et al. Indocyanine green angiographic assessment of melanocytic ocular surface neoplastic lesions. Submitt Cornea Unpubl results.

        • Palme C.
        • Wanner A.
        • Romano V.
        • Haas G.
        • Kaye S.
        • Steger B.
        Observation of angiographic dye leakage in ocular surface squamous neoplasia.
        Am J Ophthalmol Case Reports. 2020; 20https://doi.org/10.1016/j.ajoc.2020.100912
        • Papas E.
        Key factors in the subjective and objective assessment of conjunctival erythema.
        Invest Ophthalmol Vis Sci. 2000; 41: 687-691
        • Peebo B.B.
        • Fagerholm P.
        • Lagali N.
        An in vivo method for visualizing flow dynamics of cells within corneal lymphatics.
        Lymphat Res Biol. 2013; 11: 93-100https://doi.org/10.1089/lrb.2012.0023
        • Perlman H.B.
        • Kimura R.
        Cochlear blood flow in acoustic trauma.
        Acta Otolaryngol. 1962; 54: 99-110https://doi.org/10.3109/00016486209126927
        • Peterson R.C.
        • Wolffsohn J.S.
        Sensitivity and reliability of objective image analysis compared to subjective grading of bulbar hyperaemia.
        Br J Ophthalmol. 2007; 91: 1464-1466https://doi.org/10.1136/bjo.2006.112680
      9. Pharmacologic modulation of vascular permeability in ocular allergy in the rat - PubMed. Accessed September 10, 2020. https://pubmed.ncbi.nlm.nih.gov/2105283/

        • Pries A.R.
        • Cornelissen A.J.M.
        • Sloot A.A.
        • et al.
        Structural adaptation and heterogeneity of normal and tumor microvascular networks.
        PLoS Comput Biol. 2009; 5https://doi.org/10.1371/journal.pcbi.1000394
        • Rocha De Lossada C.
        • Pagano L.
        • Gadhvi K.
        • et al.
        Persistent loss of marginal corneal arcades after chemical injury.
        Indian J Ophthalmol. 2020; (Press)
        • Romano V.
        • Spiteri N.
        • Kaye S.B.
        Angiographic-guided treatment of corneal neovascularization.
        JAMA Ophthalmol. 2015; 133e143544https://doi.org/10.1001/jamaophthalmol.2014.3544
        • Romano V.
        • Steger B.
        • Brunner M.
        • et al.
        Detecting change in conjunctival hyperemia using a pixel densitometry index.
        Ocul Immunol Inflamm. 2019; 27: 276-281https://doi.org/10.1080/09273948.2017.1387276
        • Romano V.
        • Steger B.
        • Brunner M.
        • Ahmad S.
        • Willoughby C.E.
        • Kaye S.B.
        Method for angiographically guided fine-needle diathermy in the treatment of corneal neovascularization.
        Cornea. 2016; 35: 1029-1032https://doi.org/10.1097/ICO.0000000000000865
        • Romano V.
        • Steger B.
        • Kaye S.B.
        Detection and imaging of lymphatic and other vessels in corneal neovascular complexes.
        Cornea. 2018; 37: e22-e23https://doi.org/10.1097/ICO.0000000000001516
        • Romano V.
        • Steger B.
        • Kaye S.B.
        Fine-needle diathermy guided by angiography.
        Cornea. 2015; 34: e29-e30https://doi.org/10.1097/ICO.0000000000000546
        • Romano V.
        • Steger B.
        • Zheng Y.
        • Ahmad S.
        • Willoughby C.E.
        • Kaye S.B.
        Angiographic and in vivo confocal microscopic characterization of human corneal blood and presumed lymphatic neovascularization: A pilot study.
        Cornea. 2015; 34: 1459-1465https://doi.org/10.1097/ICO.0000000000000609
        • Romano V.
        • Steger B.
        • Zheng Y.
        • Ahmad S.
        • Willoughby C.E.
        • Kaye S.B.
        Angiographic and in vivo confocal microscopic characterization of human corneal blood and presumed lymphatic neovascularization: A pilot study.
        Cornea. 2015; 34: 1459-1465https://doi.org/10.1097/ICO.0000000000000609
        • Schulze M.M.
        • Hutchings N.
        • Simpson T.L.
        Grading bulbar redness using cross-calibrated clinical grading scales.
        Investig Ophthalmol Vis Sci. 2011; 52: 5812-5817https://doi.org/10.1167/iovs.10-7006
        • Schulze M.M.
        • Hutchings N.
        • Simpson T.L.
        The use of fractal analysis and photometry to estimate the accuracy of bulbar redness grading scales.
        Investig Ophthalmol Vis Sci. 2008; 49: 1398-1406https://doi.org/10.1167/iovs.07-1306
        • Schulze M.M.
        • Jones D.A.
        • Simpson T.L.
        The development of validated bulbar redness grading scales.
        Optom Vis Sci. 2007; 84: 976-983https://doi.org/10.1097/OPX.0b013e318157ac9e
        • Shahidi M.
        • Wanek J.
        • Gaynes B.
        • Wu T.
        Quantitative assessment of conjunctival microvascular circulation of the human eye.
        Microvasc Res. 2010; 79: 109-113https://doi.org/10.1016/j.mvr.2009.12.003
        • Shields C.L.
        • Alset A.E.
        • Boal N.S.
        • et al.
        Conjunctival Tumors in 5002 Cases. Comparative Analysis of Benign Versus Malignant Counterparts. The 2016 James D. Allen Lecture.
        Am J Ophthalmol. 2017; 173: 106-133https://doi.org/10.1016/j.ajo.2016.09.034
        • Shields C.L.
        • Chien J.L.
        • Surakiatchanukul T.
        • Sioufi K.
        • Lally S.E.
        • Shields J.A.
        Conjunctival tumors: Review of clinical features, risks, biomarkers, and outcomes - The 2017 J. Donald M. Gass Lecture.
        Asia-Pacific J Ophthalmol. 2017; 6: 109-120https://doi.org/10.22608/APO.201710
        • Shields J.A.
        • Kligman B.E.
        • Mashayekhi A.
        • Shields C.L.
        Acquired sessile hemangioma of the conjunctiva: A report of 10 cases.
        Am J Ophthalmol. 2011; 152 (e1): 55-59https://doi.org/10.1016/j.ajo.2011.01.013
        • Shields J.A.
        • Mashayekhi A.
        • Kligman B.E.
        • et al.
        Vascular tumors of the conjunctiva in 140 cases.
        Ophthalmology. 2011; 118: 1747-1753https://doi.org/10.1016/j.ophtha.2011.04.034
        • Shortt A.J.
        • Secker G.A.
        • Munro P.M.
        • Khaw P.T.
        • Tuft S.J.
        • Daniels J.T.
        Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells.
        Stem Cells. 2007; 25: 1402-1409https://doi.org/10.1634/stemcells.2006-0580
        • Shu X.
        • Wang J.
        • Hu L.
        A review of functional slit lamp biomicroscopy.
        Eye Vis. 2019; 6https://doi.org/10.1186/s40662-019-0140-7
        • Sirazitdinova E.
        • Gijs M.
        • Bertens C.J.F.
        • Berendschot T.T.J.M.
        • Nuijts R.M.M.A.
        • Deserno T.M.
        Validation of computerized quantification of ocular redness.
        Transl Vis Sci Technol. 2019; 8https://doi.org/10.1167/tvst.8.6.31
        • Spaide R.F.
        Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization.
        Am J Ophthalmol. 2015; 160: 6-16https://doi.org/10.1016/j.ajo.2015.04.012
        • Spaide R.F.
        • Klancnik J.M.
        • Cooney M.J.
        Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography.
        JAMA Ophthalmol. 2015; 133: 66-73https://doi.org/10.1001/jamaophthalmol.2014.3950
        • Spiteri N.
        • Romano V.
        • Zheng Y.
        • et al.
        Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization.
        Ophthalmology. 2015; 122: 1079-1084https://doi.org/10.1016/j.ophtha.2015.02.012
        • Steger B.
        • Romano V.
        • Kaye S.B.
        Angiographic Evaluation of Inflammation in Atopic Keratoconjunctivitis.
        Ocul Immunol Inflamm. 2018; 26: 685-688https://doi.org/10.1080/09273948.2016.1247873
        • Steger B.
        • Romano V.
        • Kaye S.B.
        Corneal indocyanine green angiography to guide medical and surgical management of corneal neovascularization.
        Cornea. 2016; 35: 41-45https://doi.org/10.1097/ICO.0000000000000683
        • Stewart R.
        Conjunctival-corneal melt in association with carotid artery stenosis.
        Clin Ophthalmol. 2008; 2: 649https://doi.org/10.2147/opth.s2430
      10. Structural aspects of the permeability of the microvascular endothelium - PubMed. Accessed September 10, 2020. https://pubmed.ncbi.nlm.nih.gov/382743/

        • Sugisaki K.
        • Usui T.
        • Nishiyama N.
        • et al.
        Photodynamic therapy for corneal neovascularization using polymeric micelles encapsulating dendrimer porphyrins.
        Investig Ophthalmol Vis Sci. 2008; 49: 894-899https://doi.org/10.1167/iovs.07-0389
        • Sun Y.
        • Hua R.
        Ocular surface squamous neoplasia: Angiographic characteristics and response to subconjunctival/perilesional 5-fluorouracil injections.
        Drug Des Devel Ther. 2019; 13: 1323-1334https://doi.org/10.2147/DDDT.S191161
        • Talusan E.D.
        • Schwartz B.
        Fluorescein angiography: Demonstration of flow pattern of anterior ciliary arteries.
        Arch Ophthalmol. 1981; 99: 1074-1080https://doi.org/10.1001/archopht.1981.03930011074018
        • Terry R.
        • Wong R.
        • Papas E.
        Variability of clinical investigators in contact lens research.
        Optom Vis Sci. 1995; 7216 (1995;72): 16
        • Waring G.O.
        • Laibson P.R.
        A systematic method of drawing corneal pathologic conditions.
        Arch Ophthalmol. 1977; 95: 1540-1542https://doi.org/10.1001/archopht.1977.04450090062004
        • Watson P.G.
        • Bovey E.
        Anterior segment fluorescein angiography in the diagnosis of scleral inflammation.
        Ophthalmology. 1985; 92: 1-11https://doi.org/10.1016/S0161-6420(85)34074-5
        • Wuest T.R.
        • Carr D.J.J.
        VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis.
        J Exp Med. 2010; 207: 101-115https://doi.org/10.1084/jem.20091385
        • Yadav S.
        • Kaye S.
        • Wilson N.
        An unusual presentation of generalized essential telangiectasia.
        Clin Exp Dermatol. 2015; 40: 513-515https://doi.org/10.1111/ced.12568
        • Yaylali V.
        • Ohta T.
        • Kaufman S.C.
        • Maitchouk D.Y.
        • Beuerman R.W.
        In vivo confocal imaging of corneal neovascularization.
        Cornea. 1998; 17: 646-653https://doi.org/10.1097/00003226-199811000-00013
        • Yuen D.
        • Wu X.
        • Kwan A.C.
        • et al.
        Live imaging of newly formed lymphatic vessels in the cornea.
        Cell Res. 2011; 21: 1745-1749https://doi.org/10.1038/cr.2011.178
        • Zhang Y.
        • Jeon M.
        • Rich L.J.
        • et al.
        Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines.
        Nat Nanotechnol. 2014; 9: 631-638https://doi.org/10.1038/nnano.2014.130
        • Zhao F.
        • Cai S.
        • Huang Z.
        • Ding P.
        • Du C.
        Optical coherence tomography angiography in pinguecula and pterygium.
        Cornea. 2020; 39: 99-103https://doi.org/10.1097/ICO.0000000000002114
        • Zhao Z.
        • Yue Y.
        • Zhang S.
        • et al.
        Optical coherence tomography angiography for marginal corneal vascular remodelling after pterygium surgery with limbal-conjunctival autograft.
        Eye. 2020; 34: 2054-2062https://doi.org/10.1038/s41433-020-0773-8
        • Zheng Y.
        • Kaye A.E.
        • Boker A.
        • et al.
        Marginal corneal vascular arcades.
        Investig Ophthalmol Vis Sci. 2013; 54: 7470-7477https://doi.org/10.1167/iovs.13-12614