Choroidal Imaging in uveitis: an update

      Abstract

      An important goal of advancements in ocular imaging algorithms and devices has been to improve the image acquisition and resolution of deeper ocular tissues, namely the choroid and its vasculature that are otherwise inaccessible to direct clinical examination. These advancements have contributed to the understanding of the pathophysiology of a number of ocular inflammatory conditions. We focuse on the imaging characteristics of clinical conditions where imaging the choroid has improved or radically changed the understanding of the disease, has helped in differentiation of phenotypically similar but distinct lesions, and where imaging features have proven vital formonitoring disease activity. The last two decades have seen some major developments in ocular imaging relevant to uveitis. The current review addresses both the imaging characteristics and their interpretation on conventional modalities such as fundus photography, fluorescein angiography, indocyanine green angiography and fundus autofluorescence and the recent additions in the armamentarium including optical coherence tomography (OCT) with enhanced depth imaging, swept-source OCT, and OCT angiography.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Survey of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abouammoh MA
        • Gupta V
        • Hemachandran S
        • et al.
        Indocyanine green angiographic findings in initial-onset acute Vogt–Koyanagi–Harada disease.
        Acta Ophthalmol (Copenh). 2016; 94: 573-578https://doi.org/10.1111/aos.12974
        • Agarwal A
        • Aggarwal K
        • Deokar A
        • et al.
        Optical Coherence Tomography Angiography Features of Paradoxical Worsening in Tubercular Multifocal Serpiginoid Choroiditis.
        Ocul Immunol Inflamm. 2016; 24: 621-630https://doi.org/10.1080/09273948.2016.1207785
        • Agarwal A
        • Agrawal R
        • Khandelwal N
        • et al.
        Choroidal Structural Changes in Tubercular Multifocal Serpiginoid Choroiditis.
        Ocul Immunol Inflamm. 2018; 26: 838-844https://doi.org/10.1080/09273948.2017.1370650
        • Aggarwal K
        • Agarwal A
        • Deokar A
        • et al.
        Distinguishing features of acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy on optical coherence tomography angiography and en face optical coherence tomography imaging.
        J Ophthalmic Inflamm Infect. 2017; 7: 3
        • Aggarwal K
        • Agarwal A
        • Mahajan S
        • et al.
        The role of optical coherence tomography angiography in the diagnosis and management of acute Vogt–Koyanagi–Harada disease.
        Ocul Immunol Inflamm. 2018; 26: 142-153
        • Aoyagi R
        • Hayashi T
        • Masai A
        • et al.
        Subfoveal choroidal thickness in multiple evanescent white dot syndrome.
        Clin Exp Optom. 2012; 95: 212-217
        • Astroz P
        • Miere A
        • Mrejen S
        • et al.
        Optical Coherence Tomography Angiography To Distinguish Choroidal Neovascularization From Macular Inflammatory Lesions In Multifocal Choroiditis.
        Retina. 2018; 38
        • Ataş M
        • Yuvacı İ
        • Demircan S
        • et al.
        Evaluation of the Macular, Peripapillary Nerve Fiber Layer and Choroid Thickness Changes in Behçet's Disease with Spectral-Domain OCT.
        J Ophthalmol. 2014; 2014865394https://doi.org/10.1155/2014/865394
        • Atmaca LS
        • Sonmez PA.
        Fluorescein and indocyanine green angiography findings in Behçet's disease.
        Br J Ophthalmol. 2003; 87: 1466https://doi.org/10.1136/bjo.87.12.1466
        • Bacsal K
        • Wen DSH
        • Chee S-P.
        Concomitant Choroidal Inflammation during Anterior Segment Recurrence in Vogt-Koyanagi-Harada Disease.
        Am J Ophthalmol. 2008; 145 (e2): 480-486https://doi.org/10.1016/j.ajo.2007.10.012
        • Balci O
        • Gasc A
        • Jeannin B
        • Herbort CP.
        Enhanced depth imaging is less suited than indocyanine green angiography for close monitoring of primary stromal choroiditis: a pilot report.
        Int Ophthalmol. 2017; 37: 737-748https://doi.org/10.1007/s10792-016-0303-7
        • Balci O
        • Jeannin B
        • Herbort CP.
        Contribution of dual fluorescein and indocyanine green angiography to the appraisal of posterior involvement in birdshot retinochoroiditis and Vogt–Koyanagi–Harada disease.
        Int Ophthalmol. 2018; 38: 527-539https://doi.org/10.1007/s10792-017-0487-5
        • Birnbaum AD
        • Fawzi AA
        • Rademaker A
        • Goldstein DA.
        Correlation Between Clinical Signs and Optical Coherence Tomography With Enhanced Depth Imaging Findings in Patients With Birdshot Chorioretinopathy.
        JAMA Ophthalmol. 2014; 132: 929-935https://doi.org/10.1001/jamaophthalmol.2014.877
        • Böni C
        • Thorne JE
        • Spaide RF
        • et al.
        Choroidal Findings in Eyes With Birdshot Chorioretinitis Using Enhanced-Depth Optical Coherence Tomography.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT591-OCT599https://doi.org/10.1167/iovs.15-18832
        • Borruat F-X
        • Auer C
        • Piguet B.
        Choroidopathy in multiple evanescent white dot syndrome.
        Arch Ophthalmol. 1995; 113: 1569-1571
        • Bouchenaki N
        • Cimino L
        • Auer C
        • Tran VT
        • Herbort CP.
        Assessment and classification of choroidal vasculitis in posterior uveitis using indocyanine green angiography.
        Klin Monatsblätter Für Augenheilkd. 2002; 219: 243-249
        • Bouchenaki N
        • Herbort CP.
        Indocyanine green angiography guided management of Vogt-Koyanagi-Harada disease.
        J Ophthalmic Vis Res. 2011; 6: 241
        • Bouchenaki N
        • Herbort CP.
        The contribution of indocyanine green angiography to the appraisal and management of Vogt-Koyanagi-Harada disease.
        Ophthalmology. 2001; 108: 54-64https://doi.org/10.1016/S0161-6420(00)00428-0
        • Bozzoni-pantaleoni F
        • Gharbiya M
        • Mp Pirraglia
        • et al.
        Indocyanine Green Angiographic Findings In Behçet Disease.
        Retina. 2001; 21
        • Burke TR
        • Chu CJ
        • Salvatore S
        • et al.
        Application of OCT-angiography to characterise the evolution of chorioretinal lesions in acute posterior multifocal placoid pigment epitheliopathy.
        Eye. 2017; 31: 1399-1408https://doi.org/10.1038/eye.2017.180
        • Cao JH
        • Silpa-Archa S
        • Freitas-Neto CA
        • Foster CS.
        Birdshot Chorioretinitis Lesions On Indocyanine Green Angiography As An Indicator Of Disease Activity.
        Retina Phila Pa. 2016; 36: 1751-1757https://doi.org/10.1097/iae.0000000000000967
        • de Carlo TE
        • Bonini Filho MA
        • Adhi M
        • Duker JS
        Retinal And Choroidal Vasculature In Birdshot Chorioretinopathy Analyzed Using Spectral Domain Optical Coherence Tomography Angiography.
        Retina. 2015; 35
        • Charteris DG
        • Champ C
        • Rosenthal AR
        • Lightman SL.
        Behçet's disease: activated T lymphocytes in retinal perivasculitis.
        Br J Ophthalmol. 1992; 76: 499-501
        • Chee S-P
        • Chan S-WN
        • Jap A.
        Comparison of enhanced depth imaging and swept source optical coherence tomography in assessment of choroidal thickness in Vogt–Koyanagi–Harada disease.
        Ocul Immunol Inflamm. 2017; 25: 528-532
        • Chee S-P
        • Jap A.
        The outcomes of indocyanine green angiography monitored immunotherapy in Vogt–Koyanagi–Harada disease.
        Br J Ophthalmol. 2013; 97: 130https://doi.org/10.1136/bjophthalmol-2012-302538
        • Chee S-P
        • Jap A
        • Cheung CMG.
        The Prognostic Value of Angiography in Vogt-Koyanagi-Harada Disease.
        Am J Ophthalmol. 2010; 150 (e1): 888-893https://doi.org/10.1016/j.ajo.2010.06.029
        • Chen L
        • Xu G.
        Extensive choroidal infiltrates in choroidal biopsy proven ocular sarcoidosis.
        Retin Cases Brief Rep. 2013; 7: 69-70
        • Cheng L
        • Chen X
        • Weng S
        • et al.
        Spectral-Domain Optical Coherence Tomography Angiography Findings in Multifocal Choroiditis With Active Lesions.
        Am J Ophthalmol. 2016; 169: 145-161https://doi.org/10.1016/j.ajo.2016.06.029
        • Chung Y-R
        • Cho EH
        • Jang S
        • et al.
        Choroidal Thickness Indicates Subclinical Ocular and Systemic Inflammation in Eyes with Behçet Disease without Active Inflammation.
        Korean J Ophthalmol. 2018; 32: 290-295
        • Cimino L
        • Auer C
        • Herbort CP.
        Sensitivity of indocyanine green angiography for the follow-up of active inflammatory choriocapillaropathies.
        Ocul Immunol Inflamm. 2000; 8: 275-283
        • Coskun E
        • Gurler B
        • Pehlivan Y
        • et al.
        Enhanced Depth Imaging Optical Coherence Tomography Findings in Behçet Disease.
        Ocul Immunol Inflamm. 2013; 21: 440-445https://doi.org/10.3109/09273948.2013.817591
        • Dastiridou AI
        • Bousquet E
        • Kuehlewein L
        • et al.
        Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness.
        Ophthalmology. 2017; 124: 1186-1195https://doi.org/10.1016/j.ophtha.2017.03.047
        • De Luigi G
        • Mantovani A
        • Papadia M
        • Herbort CP.
        Tuberculosis-related choriocapillaritis (multifocal–serpiginous choroiditis): follow-up and precise monitoring of therapy by indocyanine green angiography.
        Int Ophthalmol. 2012; 32: 55-60https://doi.org/10.1007/s10792-011-9508-y
        • Deutman AF
        • Lion F.
        Choriocapillaris nonperfusion in acute multifocal placoid pigment epitheliopathy.
        Am J Ophthalmol. 1977; 84: 652-657
        • Deutman AF
        • Oosterhuis JA
        • Boen-Tan TN
        • Aan de Kerk AL
        Acute posterior multifocal placoid pigment epitheliopathy. Pigment epitheliopathy of choriocapillaritis?.
        Br J Ophthalmol. 1972; 56: 863-874https://doi.org/10.1136/bjo.56.12.863
        • Dhaliwal RS
        • Maguire AM
        • Flower RW
        • Arribas NP.
        Acute posterior multifocal placoid pigment epitheliopathy. An indocyanine green angiographic study.
        Retina Phila Pa. 1993; 13: 317-325
        • Dolz-Marco R
        • Sarraf D
        • Giovinazzo V
        • Freund KB.
        Optical Coherence Tomography Angiography Shows Inner Choroidal Ischemia In Acute Posterior Multifocal Placoid Pigment Epitheliopathy.
        Retin Cases Brief Rep. 2017; : 11
        • Egawa M
        • Mitamura Y
        • Akaiwa K
        • et al.
        Changes of choroidal structure after corticosteroid treatment in eyes with Vogt–Koyanagi–Harada disease.
        Br J Ophthalmol. 2016; 100: 1646-1650
        • Elahi S
        • Gillmann K
        • Gasc A
        • et al.
        Sensitivity of indocyanine green angiography compared to fluorescein angiography and enhanced depth imaging optical coherence tomography during tapering and fine-tuning of therapy in primary stromal choroiditis: A case series.
        J Curr Ophthalmol. 2019; 31: 180-187https://doi.org/10.1016/j.joco.2018.12.006
        • Fardeau C
        • Herbort CP
        • Kullmann N
        • et al.
        Indocyanine green angiography in birdshot chorioretinopathy.
        Ophthalmology. 1999; 106: 1928-1934https://doi.org/10.1016/S0161-6420(99)90403-7
        • Fardeau C
        • Tran THC
        • Gharbi B
        • et al.
        Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt-Koyanagi-Harada disease.
        Int Ophthalmol. 2007; 27: 163-172https://doi.org/10.1007/s10792-006-9024-7
        • Fiore T
        • Iaccheri B
        • Cerquaglia A
        • et al.
        Outer retinal and choroidal evaluation in multiple evanescent white dot syndrome (MEWDS): an enhanced depth imaging optical coherence tomography study.
        Ocul Immunol Inflamm. 2018; 26: 428-434
        • Fong AH
        • Li KK
        • Wong D.
        Choroidal Evaluation Using Enhanced Depth Imaging Spectral-domain Optical Coherence Tomography In Vogt–koyanagi–harada Disease.
        Retina. 2011; 31
        • Forte R
        • Aptel F
        • Thia-Soui-Tchong K
        • et al.
        Choroidal Thickness in Birdshot Retinochoroiditis Over a 2-Year Period.
        Ophthalmologica. 2019; 241: 49-55https://doi.org/10.1159/000485665
        • Furino C
        • Shalchi Z
        • Grassi MO
        • et al.
        OCT Angiography in Acute Posterior Multifocal Placoid Pigment Epitheliopathy.
        Ophthalmic Surg Lasers Imaging Retina. 2019; 50: 428-436https://doi.org/10.3928/23258160-20190703-04
        • Garcia-Garcia O
        • Jordan-Cumplido S
        • Subira-Gonzalez O
        • et al.
        Feasibility of swept-source OCT for active birdshot chorioretinopathy.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 1493-1502
        • Gass JDM.
        Acute Posterior Multifocal Placoid Pigment Epitheliopathy.
        Arch Ophthalmol. 1968; 80: 177-185https://doi.org/10.1001/archopht.1968.00980050179005
        • Gass JDM.
        Vitiliginous chorioretinitis.
        Arch Ophthalmol. 1981; 99: 1778-1787
        • Gaudric A
        • Mrejen S.
        Why the dots are black only in the late phase of the indocyanine green angiography in multiple evanescent white dot syndrome.
        Retin Cases Brief Rep. 2017; 11: S81-S85
        • Gedik Ş
        • Akova YA
        • Yilmaz G
        • Bozbeyoğlu S.
        Indocyanine Green and Fundus Fluorescein Angiographic Findings in Patients with Active Ocular Behçet's Disease.
        Ocul Immunol Inflamm. 2005; 13: 51-58https://doi.org/10.1080/09273940490518757
        • George RK
        • Chan C-C
        • Whitcup SM
        • Nussenblatt RB.
        Ocular immunopathology of Behçet's disease.
        Surv Ophthalmol. 1997; 42: 157-162
        • Gobuty M
        • Adhi M
        • Read SP
        • Duker JS.
        Visual response and anatomical changes on sequential spectral-domain optical coherence tomography in birdshot chorioretinopathy treated with local corticosteroid therapy.
        Int J Retina Vitr. 2016; 2: 9https://doi.org/10.1186/s40942-016-0034-y
        • Gross NE
        • Yannuzzi LA
        • Freund KB
        • Spaide RF
        • Amato GP
        • Sigal R.
        Multiple evanescent white dot syndrome.
        Arch Ophthalmol. 2006; 124: 493-500
        • Hashimoto Y
        • Saito W
        • Hasegawa Y
        • et al.
        Involvement of inner choroidal layer in choroidal thinning during regression of multiple evanescent white dot syndrome.
        J Ophthalmol. 2019; : 2019
        • Hashimoto Y
        • Saito W
        • Saito M
        • et al.
        Decreased choroidal blood flow velocity in the pathogenesis of multiple evanescent white dot syndrome.
        Graefes Arch Clin Exp Ophthalmol. 2015; 253: 1457-1464
        • Hashizume K
        • Imamura Y
        • Fujiwara T
        • et al.
        Choroidal thickness in eyes with posterior recurrence of Vogt–Koyanagi–Harada disease after high-dose steroid therapy.
        Acta Ophthalmol (Copenh). 2014; 92: e490-e491https://doi.org/10.1111/aos.12384
        • Heiferman MJ
        • Rahmani S
        • Jampol LM
        • et al.
        Acute posterior multifocal placoid pigment epitheliopathy on optical coherence tomography angiography.
        Retina Phila Pa. 2017; 37: 2084
        • Herbort C
        • Probst K
        • Cimino L
        • Tran V.
        Differential inflammatory involvement in retina and choroïd in birdshot chorioretinopathy.
        Klin Monatsbl Augenheilkd. 2004; 221: 351-356https://doi.org/10.1055/s-2004-812827
        • Herbort CP.
        Fluorescein and indocyanine green angiography for uveitis.
        Middle East Afr J Ophthalmol. 2009; 16: 168
        • Herbort CP
        • LeHoang P
        • Guex-Crosier Y.
        Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol.
        Ophthalmology. 1998; 105: 432-440
        • Herbort CP
        • Mantovani A
        • Bouchenaki N.
        Indocyanine green angiography in Vogt–Koyanagi–Harada disease: angiographic signs and utility in patient follow-up.
        Int Ophthalmol. 2007; 27: 173-182https://doi.org/10.1007/s10792-007-9060-y
        • Hirooka K
        • Saito W
        • Namba K
        • et al.
        Early post-treatment choroidal thickness to alert sunset glow fundus in patients with Vogt-Koyanagi-Harada disease treated with systemic corticosteroids.
        PloS One. 2017; 12
        • Hirooka K
        • Saito W
        • Namba K
        • et al.
        Relationship between choroidal blood flow velocity and choroidal thickness during systemic corticosteroid therapy for Vogt–Koyanagi–Harada disease.
        Graefes Arch Clin Exp Ophthalmol. 2015; 253: 609-617https://doi.org/10.1007/s00417-014-2927-5
        • Hirooka K
        • Saito W
        • Namba K
        • et al.
        Significant role of the choroidal outer layer during recovery from choroidal thickening in Vogt-Koyanagi-Harada disease patients treated with systemic corticosteroids.
        BMC Ophthalmol. 2015; 15: 181
        • Hirooka K
        • Saito W
        • Saito M
        • et al.
        Increased choroidal blood flow velocity with regression of acute posterior multifocal placoid pigment epitheliopathy.
        Jpn J Ophthalmol. 2016; 60: 172-178https://doi.org/10.1007/s10384-016-0440-6
        • Hirose S
        • Saito W
        • Yoshida K
        • et al.
        Elevated choroidal blood flow velocity during systemic corticosteroid therapy in Vogt–Koyanagi–Harada disease.
        Acta Ophthalmol (Copenh). 2008; 86: 902-907
        • Hosoda Y
        • Uji A
        • Hangai M
        • Morooka S
        • Nishijima K
        • Yoshimura N.
        Relationship between retinal lesions and inward choroidal bulging in Vogt-Koyanagi-Harada disease.
        Am J Ophthalmol. 2014; 157: 1056-1063
        • Howe LJ
        • Woon H
        • Graham EM
        • et al.
        Choroidal Hypoperfusion in Acute Posterior Multifocal Placoid Pigment Epitheliopathy: An Indocyanine Green Angiography Study.
        Ophthalmology. 1995; 102: 790-798https://doi.org/10.1016/S0161-6420(95)30955-4
        • Ie D
        • Glaser BM
        • Murphy RP
        • et al.
        Indocyanine green angiography in multiple evanescent white-dot syndrome.
        Am J Ophthalmol. 1994; 117: 7-12
        • Ikeda N
        • Ikeda T
        • Nagata M
        • Tano R
        • Mimura O.
        Location of lesions in multiple evanescent white dot syndrome and the cause of the hypofluorescent spots observed by indocyanine green angiography.
        Graefes Arch Clin Exp Ophthalmol. 2001; 239: 242-247
        • Invernizzi A
        • Agarwal A
        • Cozzi M
        • et al.
        Enhanced Depth Imaging Optical Coherence Tomography Features In Areas Of Choriocapillaris Hypoperfusion.
        Retina. 2016; 36
        • Invernizzi A
        • Agarwal A
        • Mapelli C
        Longitudinal follow-up of choroidal granulomas using enhanced depth imaging optical coherence tomography.
        Retina. 2017; 37: 144-153
        • Invernizzi A
        • Mapelli C
        • Viola F
        • et al.
        Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography.
        Retina. 2015; 35: 525-531
        • Ishikawa S
        • Taguchi M
        • Muraoka T
        • Sakurai Y
        • Kanda T
        • Takeuchi M.
        Changes in subfoveal choroidal thickness associated with uveitis activity in patients with Behçet's disease.
        Br J Ophthalmol. 2014; 98: 1508https://doi.org/10.1136/bjophthalmol-2014-305333
        • Işık MU
        • Yalcındag N.
        Comparison of Spectral Domain Optical Coherence Tomography (SD OCT) Findings with Laser Flare Photometry (LFP) Measurements in Behçet's Uveitis.
        Ocul Immunol Inflamm. 2020; 28: 194-199https://doi.org/10.1080/09273948.2018.1552976
        • Jampol LM
        • Sieving PA
        • Pugh D
        • et al.
        Multiple evanescent white dot syndrome: I. Clinical findings.
        Arch Ophthalmol. 1984; 102: 671-674
        • Jap A
        • Chee S-P.
        The role of enhanced depth imaging optical coherence tomography in chronic Vogt-Koyanagi-Harada disease.
        Br J Ophthalmol. 2017; 101: 186-189
        • Jung JJ
        • Mrejen S
        • Freund KB
        • Yannuzzi LA.
        Idiopathic Multifocal Choroiditis With Peripapillary Zonal Inflammation: A Multimodal Imaging Analysis.
        Retin Cases Brief Rep. 2014; 8
        • Karadag AS
        • Bilgin B
        • Soylu MB.
        Comparison of optical coherence tomographic findings between Behcet disease patients with and without ocular involvement and healthy subjects.
        Arq Bras Oftalmol. 2017; 80: 69-73
        • Kawaguchi T
        • Horie S
        • Bouchenaki N
        • et al.
        Suboptimal therapy controls clinically apparent disease but not subclinical progression of Vogt-Koyanagi-Harada disease.
        Int Ophthalmol. 2010; 30: 41-50https://doi.org/10.1007/s10792-008-9288-1
        • Kawano H
        • Sonoda S
        • Yamashita T
        • et al.
        Relative changes in luminal and stromal areas of choroid determined by binarization of EDI-OCT images in eyes with Vogt-Koyanagi-Harada disease after treatment.
        Graefes Arch Clin Exp Ophthalmol. 2016; 254: 421-426
        • Keane PA
        • Allie M
        • Turner SJ
        • et al.
        Characterization of Birdshot Chorioretinopathy Using Extramacular Enhanced Depth Optical Coherence Tomography.
        JAMA Ophthalmol. 2013; 131: 341-350https://doi.org/10.1001/jamaophthalmol.2013.1724
        • Khochtali S
        • Dridi T
        • Abroug N
        • Ksiaa I
        • Lupidi M
        • Khairallah M.
        Swept-Source optical coherence tomography angiography shows choriocapillaris flow reduction in multiple evanescent white dot syndrome.
        J Curr Ophthalmol. 2020; 32: 211
        • Kim M
        • Kim H
        • Kwon HJ
        • et al.
        Choroidal Thickness in Behcet's Uveitis: An Enhanced Depth Imaging-Optical Coherence Tomography and Its Association With Angiographic Changes.
        Invest Ophthalmol Vis Sci. 2013; 54: 6033-6039https://doi.org/10.1167/iovs.13-12231
        • Klaeger A
        • Tv Tran
        • Hiroz C-a
        • Morisod L
        • Herbort CP.
        Indocyanine Green Angiography In Behcet's Uveitis.
        Retina. 2000; 20
        • Klufas MA
        • Phasukkijwatana N
        • Iafe NA
        • et al.
        Optical coherence tomography angiography reveals choriocapillaris flow reduction in placoid chorioretinitis.
        Ophthalmol Retina. 2017; 1: 77-91
        • Kohno T
        • Miki T
        • Shiraki K
        • et al.
        Subtraction ICG angiography in Harada's disease.
        Br J Ophthalmol. 1999; 83: 822https://doi.org/10.1136/bjo.83.7.822
        • Lages V
        • Mantovani A
        • Papadia M
        • Herbort CP.
        MEWDS is a true primary choriocapillaritis and basic mechanisms do not seem to differ from other choriocapillaritis entities.
        J Curr Ophthalmol. 2018; 30: 281
        • Levison AL
        • Baynes KM
        • Lowder CY
        • et al.
        Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis.
        Br J Ophthalmol. 2017; 101: 616https://doi.org/10.1136/bjophthalmol-2016-308806
        • Liu S
        • Du L
        • Zhou Q
        • et al.
        The Choroidal Vascularity Index decreases and choroidal thickness increases in Vogt–Koyanagi–Harada disease patients during a recurrent anterior uveitis attack.
        Ocul Immunol Inflamm. 2018; 26: 1237-1243
        • Maggio E
        • Alfano A
        • Polito A
        • Pertile G.
        Choroidal perfusion abnormalities associated with Acute Posterior Multifocal Placoid Pigment Epitheliopathy: a case report.
        BMC Ophthalmol. 2018; 18: 87https://doi.org/10.1186/s12886-018-0756-8
        • Mandadi SKR
        • Agarwal A
        • Aggarwal K
        • et al.
        Novel Findings On Optical Coherence Tomography Angiography In Patients With Tubercular Serpiginous-like Choroiditis.
        Retina. 2017; 37
        • Marsiglia M
        • Gallego-Pinazo R
        • De Souza EC
        • et al.
        Expanded clinical spectrum of multiple evanescent white dot syndrome with multimodal imaging.
        Retina. 2016; 36: 64-74
        • Maruko I
        • Iida T
        • Sugano Y
        • et al.
        Subfoveal Choroidal Thickness After Treatment Of Vogt–Koyanagi–Harada Disease.
        Retina. 2011; 31
        • Maruko I
        • Iida T
        • Sugano Y
        • Go S
        • Sekiryu T.
        Subfoveal Choroidal Thickness In Papillitis Type Of Vogt–Koyanagi–Harada Disease And Idiopathic Optic Neuritis.
        Retina. 2016; 36
        • Matsuo T
        • Sato Y
        • Shiraga F
        • et al.
        Choroidal abnormalities in behçet disease observed by simultaneous indocyanine green and fluorescein angiography with scanning laser ophthalmoscopy.
        Ophthalmology. 1999; 106: 295-300https://doi.org/10.1016/S0161-6420(99)90069-6
        • Mawatari Y
        • Hirata A
        • Fukushima M
        • Tanihara H.
        Choroidal dye filling velocity in patients with Vogt–Koyanagi–Harada disease.
        Graefes Arch Clin Exp Ophthalmol. 2006; 244: 1056-1059
        • Mehta H
        • Sim D
        • Keane P
        • et al.
        Structural changes of the choroid in sarcoid-and tuberculosis-related granulomatous uveitis.
        Eye. 2015; 29: 1060-1068
        • Miyanaga M
        • Kawaguchi T
        • Miyata K
        • et al.
        Indocyanine green angiography findings in initial acute pretreatment Vogt-Koyanagi-Harada disease in Japanese patients.
        Jpn J Ophthalmol. 2010; 54: 377-382https://doi.org/10.1007/s10384-010-0853-6
        • Moharana B
        • Bansal R
        • Singh R
        • et al.
        Enhanced Depth Imaging by High-Resolution Spectral Domain Optical Coherence Tomography in Tubercular Multifocal Serpiginoid Choroiditis.
        Ocul Immunol Inflamm. 2019; 27: 781-787https://doi.org/10.1080/09273948.2018.1465101
        • Mrejen S
        • Sarraf D
        • Chexal S
        • Wald K
        • Freund KB.
        Choroidal involvement in acute posterior multifocal placoid pigment epitheliopathy.
        Ophthalmic Surg Lasers Imaging Retina. 2016; 47: 20-26
        • Nakai K
        • Gomi F
        • Ikuno Y
        • et al.
        Choroidal observations in Vogt–Koyanagi–Harada disease using high-penetration optical coherence tomography.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 1089-1095https://doi.org/10.1007/s00417-011-1910-7
        • Nakayama M
        • Keino H
        • Okada AA
        • et al.
        Enhanced Depth Imaging Optical Coherence Tomography of The Choroid In Vogt–Koyanagi–Harada Disease.
        Retina. 2012; 32
        • Nguyen MHT
        • Witkin AJ
        • Reichel E
        • et al.
        Microstructural abnormalities in MEWDS demonstrated by ultrahigh resolution optical coherence tomography.
        Retina Phila Pa. 2007; 27: 414
        • Obana A
        • Kusumi M
        • Miki T.
        Indocyanine green angiographic aspects of multiple evanescent white dot syndrome.
        Retina. 1996; 16: 97-104
        • dell'Omo R
        • Wong R
        • Marino M
        • Konstantopoulou K
        • Pavesio C.
        Relationship between different fluorescein and indocyanine green angiography features in multiple evanescent white dot syndrome.
        Br J Ophthalmol. 2010; 94: 59-63
        • Onal S
        • Uludag G
        • Oray M
        • et al.
        Quantitative Analysis Of Structural Alterations In The Choroid Of Patients With Active Behçet Uveitis.
        Retina. 2018; 38
        • Onishi AC
        • Roberts PK
        • Jampol LM
        • et al.
        Characterization and correlation of “Jampol dots” on adaptive optics with foveal granularity on conventional fundus imaging.
        Retina. 2019; 39: 235-246
        • Oshima Y
        • Harino S
        • Hara Y
        • Tano Y.
        Indocyanine Green Angiographic Findings in Vogt-Koyanagi-Harada Disease.
        Am J Ophthalmol. 1996; 122: 58-66https://doi.org/10.1016/S0002-9394(14)71964-6
        • Papadia M
        • Herbort CP.
        Unilateral Papillitis, the Tip of the Iceberg of Bilateral ICGA-detected Tuberculous Choroiditis.
        Ocul Immunol Inflamm. 2011; 19: 124-126https://doi.org/10.3109/09273948.2010.530872
        • Park D
        • Schatz H
        • McDonald HR
        • Johnson RN.
        Indocyanine green angiography of acute mult-if-ocal posterior placoid pigment epitheliopathy.
        Ophthalmology. 1995; 102: 1877-1883
        • Park SS
        • Thinda S
        • Kim DY
        • et al.
        Phase-Variance Optical Coherence Tomographic Angiography Imaging of Choroidal Perfusion Changes Associated With Acute Posterior Multifocal Placoid Pigment Epitheliopathy.
        JAMA Ophthalmol. 2016; 134: 943-945https://doi.org/10.1001/jamaophthalmol.2016.1645
        • Park UC
        • Cho IH
        • Lee EK
        • Yu HG.
        The effect on choroidal changes of the route of systemic corticosteroids in acute Vogt-Koyanagi-Harada disease.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 1203-1211
        • Park UC
        • Cho IH
        • Moon SW
        • Yu HG.
        Long-term Change of Subfoveal Choroidal Thickness in Behçet's Disease Patients with Posterior Uveitis.
        Ocul Immunol Inflamm. 2018; 26: 397-405https://doi.org/10.1080/09273948.2016.1268169
        • Pellegrini M
        • Veronese C
        • Bernabei F
        • et al.
        Choroidal vascular changes in multiple evanescent white dot syndrome.
        Ocul Immunol Inflamm. 2019; (Published online): 1-6
        • Pepple KL
        • Chu Z
        • Weinstein J
        • Munk MR
        • Van Gelder RN
        • Wang RK.
        Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy.
        JAMA Ophthalmol. 2018; 136: 1288-1292
        • Pereira F
        • Lima LH
        • de Azevedo AGB
        • et al.
        Swept-source OCT in patients with multiple evanescent white dot syndrome.
        J Ophthalmic Inflamm Infect. 2018; 8: 16
        • Pichi F
        • Sarraf D
        • Morara M
        • Mazumdar S
        • Neri P
        • Gupta V.
        Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis.
        J Ophthalmic Inflamm Infect. 2017; 7: 20
        • Pichi F
        • Srvivastava SK
        • Chexal S
        • et al.
        En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: new insights into pathogenesis.
        Retina. 2016; 36: S178-S188
        • Pohlmann D
        • Pleyer U
        • Joussen AM
        • Winterhalter S.
        Optical coherence tomography angiography in comparison with other multimodal imaging techniques in punctate inner choroidopathy.
        Br J Ophthalmol. 2019; 103: 60https://doi.org/10.1136/bjophthalmol-2017-311764
        • Rifkin LM
        • Munk MR
        • Baddar D
        • Goldstein DA.
        A New OCT Finding in Tuberculous Serpiginous-like Choroidopathy.
        Ocul Immunol Inflamm. 2015; 23: 53-58https://doi.org/10.3109/09273948.2014.964421
        • Sakata VM
        • Da Silva FT
        • Hirata CE
        • et al.
        Choroidal bulging in patients with Vogt-Koyanagi-Harada disease in the non-acute uveitic stage.
        J Ophthalmic Inflamm Infect. 2014; 4: 1-5
        • Salman A
        • Parmar P
        • Rajamohan M
        • et al.
        Optical Coherence Tomography in Choroidal Tuberculosis.
        Am J Ophthalmol. 2006; 142: 170-172https://doi.org/10.1016/j.ajo.2006.01.071
        • Salvatore S
        • Steeples LR
        • Ross AH
        • et al.
        Multimodal Imaging in Acute Posterior Multifocal Placoid Pigment Epitheliopathy Demonstrating Obstruction of the Choriocapillaris.
        Ophthalmic Surg Lasers Imaging Retina. 2016; 47: 677-681https://doi.org/10.3928/23258160-20160707-12
      1. Shirahama S, Kaburaki T, Nakahara H, et al. Association between subfoveal choroidal thickness and leakage site on fluorescein angiography in Behçet's uveitis. Sci Rep. 2019;9(1):8612. doi:10.1038/s41598-019-45149-4

        • Sieving PA
        • Fishman GA
        • Jampol LM
        • Pugh D.
        Multiple evanescent white dot syndrome: II. Electrophysiology of the photoreceptors during retinal pigment epithelial disease.
        Arch Ophthalmol. 1984; 102: 675-679
        • Silpa-archa S
        • Maleki A
        • Roohipoor R
        • Preble JM
        • Foster CS.
        Analysis Of Three-dimensional Choroidal Volume With Enhanced Depth Imaging Findings In Patients With Birdshot Retinochoroidopathy.
        Retina. 2016; 36
        • da Silva FT
        • Hirata CE
        • Sakata VM
        • et al.
        Indocyanine green angiography findings in patients with long-standing Vogt-Koyanagi-Harada disease: a cross-sectional study.
        BMC Ophthalmol. 2012; 12: 40https://doi.org/10.1186/1471-2415-12-40
        • da Silva FT
        • Sakata VM
        • Nakashima A
        • et al.
        Enhanced depth imaging optical coherence tomography in long-standing Vogt–Koyanagi–Harada disease.
        Br J Ophthalmol. 2013; 97: 70https://doi.org/10.1136/bjophthalmol-2012-302089
        • Skvortsova N
        • Gasc A
        • Jeannin B
        • Herbort CP.
        Evolution of choroidal thickness over time and effect of early and sustained therapy in birdshot retinochoroiditis.
        Eye. 2017; 31: 1205-1211https://doi.org/10.1038/eye.2017.54
        • Slakter JS
        • Giovannini A
        • Yannuzzi LA
        • et al.
        Indocyanine green angiography of multifocal choroiditis.
        Ophthalmology. 1997; 104: 1813-1819
        • Spaide RF.
        Autofluorescence imaging of acute posterior multifocal placoid pigment epitheliopathy.
        Retina. 2006; 26: 479-482
        • Spaide RF
        • Goldberg N
        • Freund KB.
        Redefining Multifocal Choroiditis And Panuveitis And Punctate Inner Choroidopathy Through Multimodal Imaging.
        Retina. 2013; 33
        • Staurenghi G
        • Sadda S
        • Chakravarthy U
        • Spaide RF.
        Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN• OCT consensus.
        Ophthalmology. 2014; 121: 1572-1578
        • Symes R
        • Young M
        • Forooghian F.
        Quantitative Assessment of Retinal Degeneration in Birdshot Chorioretinopathy Using Optical Coherence Tomography.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 1009-1012https://doi.org/10.3928/23258160-20151027-04
        • Tagawa Y
        • Namba K
        • Mizuuchi K
        • et al.
        Choroidal thickening prior to anterior recurrence in patients with Vogt–Koyanagi–Harada disease.
        Br J Ophthalmol. 2016; 100: 473-477
        • Takahashi H
        • Takase H
        • Ishizuka A
        • et al.
        Choroidal Thickness In Convalescent Vogt–Koyanagi–Harada Disease.
        Retina. 2014; 34
        • Teussink MM
        • Huis in het Veld PI
        • de Vries LA
        • et al.
        Multimodal imaging of the disease progression of birdshot chorioretinopathy.
        Acta Ophthalmol (Copenh). 2016; 94: 815-823
        • Van Buskirk EM
        • Lessell S
        • Friedman E.
        Pigmentary epitheliopathy and erythema nodosum.
        Arch Ophthalmol. 1971; 85: 369-372
        • Vance SK
        • Khan S
        • Klancnik JM
        • Freund KB.
        Characteristic Spectral-domain Optical Coherence Tomography Findings Of Multifocal Choroiditis.
        Retina. 2011; 31
        • Wang H
        • Tan SZ
        • Aslam T
        • et al.
        Multimodal Evaluation of Presumed Tuberculous Serpiginous-Like Choroiditis.
        Ocul Immunol Inflamm. 2019; 27: 1149-1153https://doi.org/10.1080/09273948.2018.1501497
        • Wolfensberger TJ
        • Herbort CP.
        Indocyanine green angiographic features in ocular sarcoidosis.
        Ophthalmology. 1999; 106: 285-289
        • Wolfensberger TJ
        • Piguet B
        • Herbort CP.
        Indocyanine green angiographic features in tuberculous chorioretinitis.
        Am J Ophthalmol. 1999; 127: 350-353https://doi.org/10.1016/S0002-9394(98)00325-0
        • Wolff B
        • Vasseur V
        • Affortit A
        • Kodjikian L
        • Sahel J-A
        • Mauget-faÿsse M.
        En-face” spectral-domain optical coherence tomography findings in multiple evanescent white dot syndrome.
        J Ophthalmol. 2014; : 2014
        • Yannuzzi NA
        • Swaminathan SS
        • Zheng F
        • et al.
        Swept-source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome.
        Ophthalmic Surg Lasers Imaging Retina. 2017; 48: 69-74
        • Yesilirmak N
        • Lee W-H
        • Gur Gungor S
        • et al.
        Enhanced depth imaging optical coherence tomography in patients with different phases of Behcet's panuveitis.
        Can J Ophthalmol. 2017; 52: 48-53https://doi.org/10.1016/j.jcjo.2016.07.020
        • Young M
        • Fallah N
        • Forooghian F.
        Choroidal Degeneration In Birdshot Chorioretinopathy.
        Retina. 2015; 35
        • Zahid S
        • Chen KC
        • Jung JJ
        • et al.
        Optical Coherence Tomography Angiography Of Chorioretinal Lesions Due To Idiopathic Multifocal Choroiditis.
        Retina. 2017; 37
        • Zarranz-Ventura J
        • Sim DA
        • Keane PA
        • et al.
        Characterization of Punctate Inner Choroidopathy Using Enhanced Depth Imaging Optical Coherence Tomography.
        Ophthalmology. 2014; 121: 1790-1797https://doi.org/10.1016/j.ophtha.2014.03.011
        • Zicarelli F
        • Mantovani A
        • Preziosa C
        • Staurenghi G.
        Multimodal imaging of multiple evanescent white dot syndrome: a new interpretation.
        Ocul Immunol Inflamm. 2020; 28: 814-820